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Sperner’s lemma




Brouwer’s theorem

Let B be a d-dimensional ball and f be a continuous B — B
map.

Then always

Theorem (Brouwer’s theorem, 1911)

There exists x € B such that f(x) = x.

Such an x is called a fixed-point.

Many applications (economics, game theory, algebra,
geometry, combinatorics, ...).
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Application

Assume that a tablecloth is on a table.
Take it.

Crumple it.

Throw it again on the table.

One point of the tablecloth is at the same position as before.
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existence/exhibition

We know that such a fixed-point always exists, as soon as f is
continuous.

But where is this fixed point ?

Nothing is said about the way of finding it in the statement of
the theorem

So we can know that something exists without having seen it,
and without knowing where we can find it.
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The proofs

We can look at the proof.
Unfortunately, the first proofs were non-constructive.
Assuming that there is no fixed-point, we can build a new object

— through continuous deformation (and then choice axiom) —
whose existence is impossible.
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Sperner’s lemma

In 1929, Sperner (a German mathematician) found a beautiful
combinatorial counterpart of Brouwer’s theorem, with a
constructive proof.

In dimension 2: take a triangle T, whose vertices are
respectively colored in blue, red and . Assume that T is
triangulated and denote by K this triangulation. Color the
vertices of K in such a way that

@ a vertex on a edge of T takes the color of one of the

endpoints of the edge;

@ avertex inside T takes any of the three colors.
Then there is a fully-colored small triangle in K, that is, a small
triangle of K having exactly one vertex of each color.
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Sperner’s lemma

Université Paris Est, Ecole des Ponts



Sperner’s lemma




©
S
£
<o
w
S
o
c
S
o
Q
w




Sperner’s lemma

Lemma

Let K be a triangulation of a d-dimensional simplex T, whose
vertices are denoted vg, V4, ..., V4.

LetX: V(T) — {0,1,...,d} such that A(v) = i implies that
v; is one of the vertices of the minimal face of T containing v.

Then there is a small simplex o € K such that
(o) ={0,1,...,d}.

Such a X is called a Sperner labelling. A simplex such that
A(o) ={0,1,...,d} is said to be fully-labelled.
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Proof

Proof in dimension 2

Start outside T. Go through the first @&——@®.

Either you are in

or their is another @&——@.

Repeat this operation. Since there is an odd number of
@ ———@0n the boundary of T, your walk will terminate

inside T,

...necessarily in a
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Using induction, this proof can be used to prove Sperner’s
lemma in any dimension.

It provides an algorithm, which finds a fully-labelled simplex.
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Another proof proposed by Jack, using the oiks.

Lemma (Sperner’s lemma bis)

Color the vertices of a triangulation of a d-sphere with

(d + 1)-colors. If there is a fully-colored simplex, then there is
another one.
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A d-oik is a finite set V and a collection of (d + 1)-subsets of V
— called the rooms such that any d-subset of V is contained in
an even number of rooms.

The triangulation K of the d-sphere is a d-oik. We denote by V
its vertex set.

Another d-oik (Sperner): assume that all vertices of V are
colored with (d + 1) colors. The subsets S such that V \ S
contains exactly one vertex of each color are the rooms of a
d-oik.
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Partition in rooms

Let Cy,...,Cy be h oiks sharing a common vertex set.
Assume that there is a partition of V in rooms Ry, . .., Ry such
that Rj € Cj foreachi =1,...,h. Then there another
partition of this kind.

Sperner’s lemma is the consequence with h = 2 and with the
two aformentioned d-oiks.
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Back to Brouwer’s theorem

Let f be a continuous map T — T. Each point of T is identified
by a triple (X1, X2, Xx3) suchthat xy + xo + x3 =1and x; > 0
for each i. Write f(x) = (fi(x), f2(x), f3(x)).

Take a triangulation K of mesh e of T. Color each vertex of K
with the smallest i such that f;(x) < x;. It provides a Sperner
coloring. There is a small triangle . having exactly one vertex
of each color. By compactness, it is possible to have a
sequence of ex — 0 and a sequence 7, converging toward a
point x € T, which is necessarily a fixed-point of f.
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Complexity

We have seen that there is an algorithm that finds a
fully-colored simplex. What about complexity ?

Papadimitriou has introduced in 1992 the PPAD class, which
the class of search problems for which the existence is proved
through the following argument

In any directed graph with one unbalanced node (node with
outdegree different from its indegree), there must be another
unbalanced node.

Moreover, he has proved that PPAD-complete problems exist,

that is problems for which a polynomial algorithm would lead to
a polynomial algorithm for any PPAD problem.
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Complexity of Sperner

Fix n.

Consider the set of triple (ny, N2, n3) of positive integers such
that ny + n2 + n3 = n. Two triples (n4, N2, n3) and (ny, Ny, n3)
are said to be neighbors if Z?=1 |nj — n] < 2. Itinduces a
triangulation of the 2-dimensional standard simplex.

Now assume that we have an oracle A(nq, n2, n3) defined for
all (nq, n2, n3) giving a Sperner labelling on the aformentioned
triangulation.

Is it possible to find a fully-labelled simplex in polynomial time ?
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Commplexity of Sperner

Theorem (Chen Deng 2009)
Sperner is PPAD-complete in dimension 2.

For dimension 3, it was already proved by Papadimitriou.
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Another Sperner’s lemma

Theorem (De Loera, Prescott, Su, 2003)

Let K be a triangulation of a d-dimensional polytope P, whose
vertices are denoted vg, V4, . .., Vp.

LetX: V(P) — {0,1,...,n} such that X\(v) = i implies that
v; is one of the vertices of the minimal face of P containing v.

Then there is at least n — d small simplices o € K such that
A(o)| =d+1.

Remark. [M.] n — d can be improved to
n — d + max,cy deg(v)/d.
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Another Sperner’s lemma

Theorem (Babson, 2007)

Let K be a triangulation of a d-dimensional simplex T. Let
nq, ng be positive integers such that ny + np = d + 2. Let
A1, A2 be two Sperner labellings. There there exists a small
simplex o € K such that |A\1(o)| > ny and |Az2(o)| > na.

Usual Sperner: ny =d +1and np = 1.
Even for d = ny = ny = 2, it is not at all easy.

No constructive proof known !
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Another Sperner’s lemma

Theorem (Babson, 2007)

Let K be a triangulation of a d-dimensional simplex T. Let

n,...,Nng be positive integers such that 2?21 nj=d+ q. Let
A1, ..., \q be q Sperner labellings. There there exists a small
simplex o € K such that |\j(e)| > n; foralli=1,...,q.

No constructive proof known !
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Tucker’s lemma




The Borsuk-Ulam theorem

Let B be a d-dimensional ball and f be a continuous B — RY
map such that for each x € 9B, we have f(—x) = —f(x).
Then always

Theorem (Borsuk-Ulam, 1933)
There exists x € B such that f(x) = 0.

Many applications (algebra, discrete geometry, combinatorics,
analysis...).
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Application

Take a sandwich with ham, tomato and bread.

There is a plan that divides the sandwich in two parts, each of
them having the same quantity of ham, tomato and bread.
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Existence

The same problem as for Brouwer’s theorem arises: where and
how can we find the x such that f(x) =0 ?

The first proofs were completely non-constructive.
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Tucker’s lemma

Tucker found a combinatorial counterpart of the B-U theorem,
with a constructive proof.

Lemma (Tucker, 1946)

Assume that the d-ball B is triangulated, with a triangulation K
that induces a centrally symmetric triangulation on OB. Let A
be a labelling of the vertices with {—1,+1,...,—d, +d}, and
assume that A\(—v) = —A(v) forany v € 8B. Then there
exists an edge whose endpoints have opposite labels.
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Proof in dimension 2

Start outside B. Go through the first e .

Either you are in A‘ﬂor a A.

or their is another e .

Repeat this operation. Since there is an odd number of
« e onthe boundary of T, your walk will terminate inside B,

...necessarily in a A‘or a A
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A constructive proof
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A constructive proof




Using induction, this proof can be used to prove Tucker’s
lemma in any dimension.

It provides an algorithm, which finds an antipodal edge.
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More details

If we want to be precise in the proof, the right thing to prove is

Lemma (Ky Fan, 1952)

Assume that the d-ball B is triangulated, with a triangulation K
that induces a centrally symmetric triangulation on 9B. Let A
be a labelling of the vertices with {—1,+1,...,—m,+m}, and
assume that A\(—v) = —A(v) forany v € 9B and that there
exists no edge whose endpoints have opposite labels.

Then there is an odd number of d-dimensional alternating
simplices.

A k-dimensional alternating simplex is a simplex whose labels
are of the form —jy, +ja, . . ., (—1)¥ji or
ity =2y -+ s (1) e with j1 < fo < .o < ik
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Constructive proof

By induction, we know that there is an odd number of
(d — 1)-dimensional alternating simplices on dB.

Go through such a simplex, you enter a d-dimensional simplex
either having another facet being a (d — 1)-dimensional
alternating simplex, or being itself a d-dimensional alternating
simplex.

And go on.
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Back to the Borsuk-Ulam theorem

Let K be a triangulation of the d-ball B with mesh € and f be
the continuous map B — RY being antipodal on the boundary
of B.

Label the vertex v with the smallest i such that

|fi(x)| = max;_1,...q|fj(x)|, and put the sign of f;(x) as sign of
the label. This labelling satsfies the requirement of Tucker’s
lemma: there is an antipodal edge (—i, +1/).

When e — 0, we can find a converging sequence of antipodal
edges (by compactness), which means that there is a
sequence (Xp) such that limp_,oc max;_4,... 4 |fi(Xn)| = 0.
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Complexity

Theorem (Palvolgyi 2009)
Tucker is PPAD-complete in dimension 2.
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