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Systems of Distinct Representatives and Linear Algebra*

Jack Edmonds
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(November 16, 1966)

Some purposes of this paper are: (1) To take seriously the term, “term: rank.” (2) To make an issue
of not “rearranging rows and columns” by not “arranging” them in the first place. (3) To promote the
numerical use of Cramer’s rule. (4) To illustrate that the relevance of “number of steps” to “amount
of work” depends on the amount of work in a step. (5) To call attention to the computational aspect
of SDR’s, an aspect where the subject differs from being an instance of familiar linear algebra. (6) To
describe an SDR instance of a theory on extremal combinatorics that uses linear algebra in very dif-
ferent ways than does totally unimodular theory. (The preceding paper, Optimum Branchings, de-

scribes another instance of that theory.)

Key Words: Algorithms, combinatorics, indeterminates, linear algebra, matroids, systems of
distinct representatives, term rank.

1. Introduction

The well-known concept of term rank [5, 6],! is
shown here to be a special case of linear-algebra rank.

 This observation is used to provide a simple linear-

algebra proof of the well-known SDR theorem. Except
for familiar linear algebra, the paper is self-contained.

Incidentally to SDR’s, an algorithm is presented for
computing the determinant or the rank of any matrix
over any integral domain. It is a variation of Gaussian
(i.e., linear) elimination which has certain advantages.
It is observed to be an interestingly bad algorithm for
computing term rank.

The final part of the paper discusses some simple
matroidal aspects of SDR’s.

2. Systems of Distinct Representatives

Let Q be any finite family of subsets of a finite
set E. “Different” members of Q may be identical in
content. The number of members of a family H is
denoted by |H|. The union of the members of H is
denoted by U(H). The SDR theorem says that it is
possible to choose a different element from each mem-
ber of Q if and only if there is no subfamily H of Q
such that |H| > |U(H)|. The “only if”* part is obvious.

A subset of E formed by choosing a different ele-

‘Ment from each member of Q is called a system of

distinct representatives of Q, or an SDR of (. (Some-

limes, such as in [1], it is called a transversal of Q.

*Prepared while the author was a visiting professor at the University of Waterloo, Ontario.
! Figures in brackets indicate the literature at the end of this paper.
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However, here the word “transversal” will be used
differently.)

3. Matrices of Zeros and Ones

The subject of SDR’s is frequently treated in the
context of matrices of 0°s and 1’s. The incidence
matrix of the family Q of subsets of E is the matrix
A=[ay;], ieE, jeQ, such that aij=11if iej, and a;;=0
otherwise. ‘

A matching in a matrix is a subset of its positions
(i, )) such that first indices (rows) of members are all
different and second indices (columns) of members are
all different. A transversal (column transversal) of a
matrix is a matching in the matrix which has a member
in each column. The product of the entries of a trans-
versal, we call a transversal product.

Clearly, Q has an SDR if and only if its incidence
matrix 4 has a 1-valued transversal (or a 1-valued
transversal product).

. In the context of 0,1 matrices the SDR theorem says
that a matrix 4=[ay], ieE, je(), of O’s and 1’s has
a l-valued transversal if and only if there is no H cQ
and KCE such that |H|> |K| and such that sub-
matrix [a;;], ieK, jeH, contains all the 1’s of submatrix

[ayl, i€k, jeH.

4. Permanents, Determinants, and Good
Algorithms

The maximum cardinality of a nonzero-valued
matching (matching having no zero entries) in any
matrix 4 is well-known as the term rank rA) of A.




Clearly r(4) is the maximum cardinality of a subset
of columns of A which has a nonzero-valued trans-
versal. Thus the term rank of a family of sets is de-
fined to be the maximum cardinality of a subfamily
which has an SDR.

Clearly r(4) equals the maximum order of a square
submatrix of 4 which has a nonzero-valued transversal.
The permanent of a square matrix is defined to be the
sum of all its transversal products. Thus r(4), for a
nonnegative matrix 4, equals the maximum order of a
submatrix of 4 with non-zero permanent. The perma-
nent of a square 0,1 matrix is the number of 1-valued
transversals of the matrix.

A good algorithm is not known for computing the
permanent of any square 0,1 matrix (relative to the
order of the matrix as the “size” of input). For an
algorithm to be good we mean that there is a poly-
nomial function f(n) which for every n is an upper
bound on the “amount of work” the algorithm does
for any input of “size” n.

The transversals of any square matrix partition
uniquely into two classes such that any two trans-
versals which differ by just two positions (of each)
are in different classes. (The proof is left to the reader.)
The determinant of a square matrix with a prescribed
1-1 correspondence between rows and columns,
i.e., with a prescribed transversal, is defined to be the
sum of transversal products over whichever of these
classes contains the prescribed transversal minus the
sum of transversal products over the other class.

A very remarkable formal property of determinants,
of say integers, is that there exists a good algorithm
for computing them —a version of Gdussian elimination
which we will describe in section 7, It is also remark-
able that there exists a good algorithm, the same one

as above, for computing the linear-algebra rank of

any matrix of say integers. The largest number of
digits of an entry as well as the dimensions of the
matrix must of course be figured somehow into the
measure of ‘“‘size”” of possible inputs to the algorithm.
For example, the “size” of an input may be taken to
be the maximum of these numbers, or may be taken
to be a vector consisting of these several numbers.

An algorithm which is good in the sense used here
is not necessarily very good from a practical viewpoint.
However, the good-versus-not-good dichotomy is
useful. It is easily formalized (say, relative to a Turing
machine, or relative to a typical digital computer with
an unlimited supply of tape), and usually it is easily
recognized informally. Within limitations it does have
practical value, and it does admit refinements to “how
good” and “how bad.” The classes of problems which
are respectively known and not known to have good
algorithms are very interesting theoretically.

Good algorithms, not Gaussian elimination, are well-
known for computing the term rank of any 0,1 matrix.

For instance see a remark in section 8 of this paper

together with [3]. We shall see that Gaussian elimina-
tion is also an algorithm for computing term rank.

5. Rank !

A main point of this paper is the following obse,
vation. Tutte in [7] uses the same idea in a deeper VWa ;

THEOREM 1. The term rank of a 0,1 matrix A }ir:
the same as the linear-algebra rank of the matri;;
obtained by replacing the 1’s in A by distinct ind.
terminates (over any integral domain).

Several “numbers” are called indeterminates if
no polynomial function of them (over the given integra]
domain) equals zero unless it is identically zero.

ProoF OF THEOREM 1. The linear-algebra rank of 5
matrix equals the maximum order of a minor with
nonzero determinant. (A minor of a matrix is a syh.
matrix with a prescribed 1—1 correspondence. be.
tween its rows and columns.) The determinant of 3
minor is a linear combination, with +1’s and —1’g

The m
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1=g=<
a;

where a

. Theorer
domain
THEO
determi
are as I

coefficients, of all its transversal products. Thus, .

where the entries are zeros and distinct indetermi-

nates, a determinant is nonzero if and only if one or
more of its transversal products is nonzero. End of
proof.

6. A Linear-Algebra Proof of the
SDR Theorem

Suppose a matrix A of zeros and distinct indetermi-
nates has no transversal of nonzeros. Then, by Theorem
1, its rank is less than the number of columns, so the
columns are linearly dependent. Let 4; be a submatrix
consisting of a minimal dependent subset H of the
columns of A. Let A2 be a submatrix consisting of a
maximal independent subset K of rows of A;. Since
row rank equals column rank, we have |H|=|K|+1.

If A has a column of all zeros then that column alone
is a dependent set H, and K is empty. Otherwise, there
is a column vector x such that 4,x is all zeros and such
that the components of x are nonzero polynomials in
the entries of 4,.

If any row, a, of 4,, not in A;, contained one or
more indeterminates, then ax would be a polynomial
function of indeterminates, equal to zero, but net
identically zero. Hence, the rows of A, not in A,
contain only zeros. End of proof.

7. A Bad Algorithm for Term Rank

Theorem 1 also suggests using Gaussian elimination
as an algorithm for computing term rank. With the
excuse of trying to give this approach every possible
advantage, we describe an improved version ©
Gaussian elimination (possibly due to Gauss).

The rank of any matrix 4° or the determinent of
any matrix A4° (with mutually corresponding index
sets), with entries from an integral domain, can be
computed as follows. '

In each step, k, beginning with k=1, obtain a nevw
matrix A*=[a¥] from A¥!=[a*3l], by first choosing
some row, call
neither of them chosen on previous steps and such that
a7 0- The algorithm stops when this is mo
longer possible.
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The matrix A% is determined as follows. Each row i(h),
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| jr) of A* is all zeros except for entries a,..

1 < g < h. For any other row i and any other column j,

afi=(afig, " O 0%, ) 2k, o0
where ajy, o is defined to be 1. It follows from
Theorem 2 that this quotient exists in the integral
domain (without fractionalizing).

THEOREM 2. The a¥, as defined above, is equal to the
determinent of the minor of A® whose rows and columns
are as listed in the brackets:

i) i) itk) i
ay j@ ... R

The rank of matrix A® equals the number of steps in the
algorithm.

PRroOF: Since each row i(h), 1 <h <k, is the same

in A* as in A¥1, we may denote
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simply by afn, and denote afy);,=1 by afyq).
Each of the other rows, i, of 4% is obtained from ele-
mentary row operations in A*! in a manner such that
the determinent of any minor of A*, containing all of
the rows and columns, i(2) and j(%), and say m other
rows and m other columns, is different from the de-
terminent of the corresponding minor in A% by a
factor of (afyyu/@ix—pjw-1y™ (Recall from the theory
of determinents that replacing any single row by ¢
times that row multiplies the value of the determinent
by ¢, and that subtracting any multiple of one row from
another row does not change the value of the
determinent.)

By iterating the above relationship between deter-
minents, for the minors

i) i@ ik i
jay  j2) ik ),

of A°, A*, . . ., and A*, we find the determinent of
this minor of A* is different from the determinent of
this minor of 4° by a factor of ’

* k * & %
(“i(l)ju)) (“iu)jm)"’ ! ( Lilkyick) )1
Gitoi Lia)j1) Qige-1)jiCk—1)

{0)i(0)

— 4k %k *
= i@ - - - Fkyk)-

On the other hand, this same minor of 4* has de-
terminent equal to '

" '

Al - - - Fwiw

because it is triangular au@im="0 for 1<h <g<k,
and @, =0 for 1 < h < k), and it has that value as the

product of its diagonal elements. Therefore the de-
terminent of the corresponding minor of 4° is equal
to ak.

The statement that the rank of A° equals the num-
ber of steps of the algorithm follows in the same way
as the same statement for a usual form of Gaussian
elimination (the one where you divide so as to get 1’s
in a diagonal, or the one where you cross multiply
without dividing): Where n is the total number of steps,
the final 4™ has the same rank as A4° since it is obtained
from A° by elementary row operations (which are
reversible). The rank of A" is n because A" contains
the minor

i(1) i(2) e i(n)
70 ) in))

having nonzero determinent, and because any row of
A" not included in this minor is all zeroes. End of proof.

Crucial implicit parts of our algorithm are the
algorithms for arithmetic operations in the appro-
priate integral domain. These include an algorithm
for dividing one member of the domain by another
whenever that quotient exists in the domain.

The algorithm for matrices A% of integers is good.
This follows from (a), (b), and Theorem 2. (a) The
familiar algorithms, for arithmetic operations on
integers in arabic notation, are good relative to the
numbers of digits in the operands. (b) A determinant
of order n is a sum of n! terms, each, except for sign,
being a product of n entries. Where m is the largest
number of digits in an entry, nm is an upper bound on
the number of digits in one such term, and so
(nm+log nl)<n(m-+log n)<n(m-+n) is an upper
bound on the number of digits in the value of the
determinant. (The base of the log is the base of the
arabic notation.) Theorem 2 tells us that each entry of
each A% is the determinent of a minor of A° Thus,
relative to the number of rows of 4° the number of
columns of A4° and the maximum number of digits in
any entry of A% we get an algebraic upper bound on
the work of carrying out the computation of each af
Since, relative to the number of rows of 4° and the
number of columns of A4°, there is an algebraic upper
bound on the number of such computations in the
algorithm, we get an algebraic upper bound on the
amount of work in the whole algorithm.

The present algorithm is more efficient, for say an -

integer-valued A°, than either the fractional or the
purely cross-multiplicational versions of Gaussian
elimination, because it divides out common integer
factors of the entries, typically the only common inte-

ger factors, thereby keeping down the number of

digits in entries, and thus the amount of arithmetic
work. Of course, most computational uses of Gaussian
elimination are approximating procedures where the
entries are repeatedly rounded off to a smaller number
of digits. When used with the same extent of round-off,
the present algorithm is no less work than any other
version of Gaussian elimination—in fact, more work
because of all the divisions to do. However, I suspect
that, when used with the same extent of round-off,
it is more accurate.
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Curiously, the algorithm for matrices of zeros and
distinct indeterminates is not good. For such matrices,
the ak’s are polynomials in indeterminates. Algorithms
for arithmetic operations on polynomials in indetermi-
nates are evident; these algorithms are good relative
to “size” of the polynomials. However, using a known
way to represent the polynomials, their “size” in
general increases too fast relative to k. In particular,
ak might have as many as k! terms.

A problem suggested by these considerations is to
find a good algorithm for computing the rank of any
matrix whose entries are polynomials (or monomials),
with integer coefficients, in any number of indetermi-
nates not necessarily different in different entries.
Presumably such an algorithm, if one exists, would
somehow combine Gaussian elimination with the
techniques for term rank. It would be interesting to
determine whether there exists a good algorithm for
computing the rank of any matrix whose entries are
zeros and indeterminates not necessarily distinct.

8. Transversal Matroids

A matroid M=(E, F) is a set E of elements and a
nonempty family F of so-called independent subsets
of E such that (1) every subset of an independent set is
independent, and (2) for any SCE, all maximal inde-
pendent subsets of S contain the same number of
elements, called the rank r(S) of S. (F contains at least
the empty set.) Where independent subset of columns
means linearly independent subset of columns, the
set of columns in a matrix (over any integral domain)
forms a matroid, called the matroid of the matrix.

In [1] it was shown by an elementary combinatorial
argument that for any finite family ‘Q of sets, the
subfamilies of Q which have SDR’s are the independent
sets of a matroid whose elements are the members
of Q. Such matroids were dubbed transversal matroids.

It is not clear a priori that, from a good algorithm
for deciding whether any given family Q has an SDR,
we can obtain a good algorithm for finding the term
rank of any Q, i.e., the maximum cardinality of a sub-
family of Q which has an SDR. To take an analogy, a
good algorithm is known for deciding whether the
members of any given Q are mutually disjoint, but a
good algorithm is not known for finding, for any 0Q,

the maximum cardinality of a subfamily with this

property.

The fact that any Q forms a matroid, as described,
says that we can find the term rank of any Q as fol-
lows. Consider the n members of Q one after another
in any predetermined order. Let L be the empty sub-
family of Q. At the kthstep (k=1, . . ., n) determine
whether the family consisting of L¥-1CQ together with
the kth member of Q has an SDR. If it does, then it is
L*. Otherwise, L*=L*"1. The cardinality of L" is the
term rank of Q. ' "

Suppose, given any Q with a nonnegative numerical
weight corresponding to each member, that we wish
to find a maximum weight-sum subfamily of Q which
has an SDR. It is proved in [2] that we get such a
subfamily as L* of the preceding algorithm simply

by first ordering the members of Q according to non.
increasing weights. Some other consequences of
the matroid property of SDR’s are developed in [1],

Can every transversal matroid be represented ag
the matroid of a matrix? By appealing to Theorem |
we see that the answer is yes: the matroid whose inde.
pendent sets are the subfamilies of Q having SDR’g
is- the matroid of the matrix obtained from the inej.
dence matrix 4 of Q by replacing the ones by distinct
indeterminates. Indeed, Theorem 1, together with the
well-known fact that matrices yield matroids as de.
scribed, provides an immediate “nonelementary”
proof that any finite family Q yields a matroid ag
described: Relative to the incidence matrix A of the
family Q, the independent sets of the transversal
matroid of Q are the subsets of columns that have
l-valued transversals. Theorem 1 says that, upon
replacing the 1’s by distinct indeterminates these are
precisely the linearly independent subsets of columns.

(The matroid of the incidence matrix 4 is not gen-
erally a transversal matroid. In fact the matroid of 4
generally depends on what integral domain its zeros
and ones come from. One can of course define the
transversal matroid of any matrix, so that relative to
it the rank of a subset of columns equals term rank
of those columns.)

Notice by considering the transpose of incidence
matrix 4, that the rows of A are the elements of a

_matroid whose independent sets are the subsets of

rows that have l-valued ‘“row transversals.” In other
words, for any family Q of subsets of a finite set E,
the members of E are the elements of a matroid for
which the independent sets are the subsets of E that
are SDR’s of subfamilies of Q. A corresponding ver-
sion of the SDR theorem says that a subset PCE
is an SDR of some subfamily of Q if and only if there
is no SCP that has nonempty intersection with fewer

than |S| members of Q.

A number of papers have developed a certain other
relationship between SDR’s and linear algebra which
(along with much else on the subject) we do not dis-
cuss here. This was one of the purposes of Hoffman
and Kuhn in [4]. Their other purpose was to extend
the SDR theorem to characterize when a family Q
of subsets of E has an SDR which contains a prescribed
subset PCE. In view of the SDR theorem, their con-
ditions are (1) that Q have an SDR, and (2) that P be
an SDR of some subfamily of Q.

As a final illustration here of the present linear-
algebra viewpoint, we prove the Hoffman-Kuhn
theorem: If set PCE is an SDR of some subfamily
of Q, then, by the matroid property for such sets, P
can be extended to some maximum cardinality subset
of E, say To, which is an SDR of some subfamily of 0,
say Qo. If family Q itself has an SDR, say T, contained
in E, then we have |Q|=|T|=|To|=1Qo|, and thus
Q= Qo. End of proof.

This paper was originally submitted to the American Mathematical
Monthly. I am indebted to the referee for several changes in wording
and for the following comments:

“The well-known SDR theorem” is not well-known to the Monthly
rea](liers and the author should give credit at some point to Philip
Hall.
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Using integers i,j etc., to represent both sets and elements is

logically inconsistent. Thus “” represents both an element of E
' and a set of Q. The author should stick to conventional means.

The author is unnecessarily sophisticated in defining “minor of a
matrix.” It can be simply and clearly defined as a square submatrix.

The author should give a reference for a conventional proof of
Philip Hall’s SDR theorem, e.g., Halmos and Vaughn (Amer. J.
Math. 72, 1950) which I believe to be at least as simple as the proof
given here.
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