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Abstract

The idea of “Lemke pivoting in a family of oiks (Euler complexes)” generalizes, and
abstracts to pure combinatorics, the Lemke-Howson exchange algorithm for finding
a Nash equilibrium in bimatrix games, as well as the classical algorithm for find-
ing the properly colored room in Sperner’s Lemma. Given a “room-partitioning”,
this algorithm finds another (distinct) room-partitioning by traversing the exchange
graph. In this paper we show that each family of k oiks O = {O1, . . . ,Ok} can be
reduced to a pair of oiks O′ = {O1+. . .+Ok,O0} (one of which, O0, is a Sperner oik)
such that the exchange graphs for O and O′ are isomorphic. Numerous application
of Sperner’s Lemma in combinatorial topology are well known.

Keywords: Euler complex (oik), room, wall, manifold, exchange algorithm, pivot;
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1 Introduction

1.1 Oiks; definition and examples

The concept of an oik (short for Euler complex) was recently introduced in [1]
as follows. Given two integers n and d such that n > d > 1, a d-dimensional
complex O = (V,R) is a uniform hypergraph of edge-size d on the ground set
V of cardinality n. Standardly, the elements v ∈ V are called vertices, while
the edges R ∈ R are called rooms; each room consists of d vertices.
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Furthermore, given a room R and a vertex v ∈ R, the difference W =
R \ {v} (of cardinality d − 1) is called a wall. A complex is called an oik if
each wall W is contained in a positive even number k(W ) of rooms.

Two rooms R, R′ ∈ R are called adjacent if their intersection is a wall, or
in other words, if their symmetric difference R∆R′ is a pair of vertices v ∈ R
and v′ ∈ R′.

An oik O will be called 2-adjacent if k(W ) ≡ 2 for every wall W , that is,
if each wall is contained in exactly two (adjacent) rooms.

The next four examples of 2-adjacent oiks are borrowed from [1].

Example 1 : Pseudo-manifolds. A (d−1)-dimensional simplicial pseudo-
manifold is a d-dimensional oik in which each d vertices are contained in
exactly zero or two rooms; in other words, each wall is in exactly two rooms.

An important special case is a triangulation of a compact manifold M ,
oriented or not. In particular, if M is a (d − 1)-dimensional sphere, the
corresponding oik O(M) is realized by a d-dimensional polytope whose every
facet is a simplex with d vertices.

The oiks generated by pseudo-manifolds, manifolds, and polytopes will
be called PM-, M-, and P-oiks, respectively. The latter will be also called
polytopal and represented as follows.

Example 2 : Polytopal oiks. Let Ax = b, x ≥ 0 be a tableau, as in the
simplex method, that is, A is a m× n matrix that contains an m×m identity
submatrix and all coordinates of b ∈ Rm are strictly positive. Let us also
assume that the solution set is bounded and all basic feasible solutions are
non-degenerate.

Let V be the column set of A. By definition, subset R ⊆ V is a room
if and only if V \ R is a basis of the tableau. The hypergraph O = (V,R)
of the rooms defines an oik of dimension d = n − m. This results from the
following exchange property of the bases. Given a basic set of columns in A
(the complement to a room), let us add to it an arbitrary “entering” column
(thus getting the complement to a wall). Then there exists a unique “leaving”
column such that all coefficients of the right-hand-side remain positive.

Combinatorially the above oik is defined by the boundary of an (n − m)-
dimensional simplicial polytope.

Remark 1 The boundary (surface) of a simplicial polytope of dimension d
is a manifold of dimension d − 1. Thus, the corresponding oik can be called
either d- or (d − 1)-dimensional. Respectively, there are two options: to call
an oik d-dimensional when its rooms are of cardinality d or d + 1. Here we
chose the first option, while the second one is chosen in [1].

Let us consider two examples of special polytopal oiks.

2



Example 3 : Gale oiks. Let us consider Gale’s cyclic polytope P = P (d, n) ⊆
Rd with n vertices. In [4], David Gale proved that the rooms of the correspond-
ing oiks are defined by the cyclic binary n-vectors x ∈ {0, 1}n with d ones such
that the following Gale evenness condition holds: If d is even then all se-
quences of successive ones in x are even. (Let us remark that the first and the
last such sequences in x make one sequence s0, since x is cyclic.) If d is odd
then all above sequences are still even, except s0, which must be odd.

Example 4 : Sperner oiks. Let the n elements of a set V be colored by d
colors, where d < n. A subset R ⊂ V is a room if and only if V \ R contains
exactly one vertex of each color.

The defined hypergraph O = (V,R) is an oik of dimension n− d.

Indeed, the complement to a wall, which is colored {1, 2, . . . , d, j}, contains
exactly two complements to rooms, which are colored {1, 2, . . . , d}.

This oik is polytopal. In particular, when V consists of 2d vertices and each
color appears twice, {1, 1, 2, 2, . . . , d, d}, the corresponding polytope is polar to
the d-dimensional cube. We leave the proofs to the reader.

Remark 2 In the latter case the complement to a room is also a room. How-
ever, in general, such a claim does not hold for the above four examples.

In [3], we introduce one more family of 2-adjacent oiks based on the Scarf
Lemma [11] and we prove that these oiks are polytopal.

1.2 Finding another room-partition or room-selection of fixed degrees by the
exchange algorithm

An oik-family is a set of k oiks O = {O1, . . . ,Ok} (of dimensions d1, . . . , dk)
defined on the same vertex-set V . Some of these oiks may be isomorphic.

Given an oik-family O, a room-selection is a hypergraphR = {R1, . . . , Rk}
in which Ri is a room of oikOi for all i ∈ [k] = {1, . . . , k}. Standardly, degR(v)
denote the degree of a vertex v ∈ V in R, that is, the number of rooms of R
that contain v. A room-selection R is called a room-partition if degR(v) ≡ 1
for each v ∈ V . It was shown in [1] that every oik-family has an even number
of room-partitions.

Remark 3 Let us note, however, that this number may be 0. Moreover, it
might be NP-hard to verify the existence of a room-partition.

Furthermore, given a room-partition, an exchange algorithm to get an-
other one is proved in [1]. This algorithm is based on constructing and, then,
traversing the exchange graph. Given a family of oiks O = {O1, . . . ,Ok} on
the common vertex-set (Oi = (V,Ri), i ∈ [k] = {1, . . . , k}), let us fix a special
vertex w ∈ V and define the exchange graph G = G(O, w) as follows.

A room-selectionR is called a skew room-partition or a butterfly if degR(w) =
0, degR(u) = 2 for a unique vertex u ∈ V , and degR(v) ≡ 1 for all other
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vertices v ∈ V \ {u,w}. Let V and V1 denote the sets of all room-partitions
and skew room-partitions, respectively.

Two room-selections R = {R1, . . . , Rk} and R′ = {R′
1, . . . , R

′
k} are called

adjacent if their symmetric difference R∆R′ is a pair of adjacent rooms
(Ri, R

′
i) from Oi for some i ∈ [k]. If also R,R′ ∈ V ∪ V1 then (R,R′) ∈ E .

Thus, the exchange graph G(V ∪ V1, E) is defined.

It is easy to list all rooms adjacent to a given room R of a given oik O. To
do so, let us select a vertex v ∈ R and enumerate all rooms of O, except R,
that contain the wall W = R \ {v}. By definition of an oik, there is an odd
number k(W ) − 1 of such rooms. We get all rooms of O adjacent to R just
repeating the above procedure for all v ∈ R.

Furthermore, by this procedure, it is also easy to obtain all room-selections
adjacent to a given oneR = {R1, . . . , Rk} in a given oik-familyO = {O1, . . . ,Ok}.

The above definitions and observations immediately imply the following
properties of the exchange graph G(V ∪ V1, E).

Lemma 1 Vertices of V (room-partitions) and V1 (skew room-partitions) have
odd and even degrees in G, respectively. No two vertices of V are adjacent. 2

Obviously, the number |V| of the room-paritions is even, since in any graph
number of the odd degree vertices is even.

Furthermore, given a room-partition R ∈ V , let us traverse G arbitrarily,
yet, beginning in R ∈ V and passing no edge twice, until no possible move
is left. In other words, we construct an Eulerian path (a connected subgraph
with two odd degree vertices and the rest of even degree) beginning in an odd
degree vertex (room-partition) R ∈ V . Obviously, walking along any such
path ends at another odd degree vertex (room-partition) R′ ∈ V distinct from
R. Indeed, R′ 6∈ V1, since all vertices of V1 have even degrees. Also R′ 6= R,
since vertex R ∈ V is of odd degree. In particular, the following statement
follows.

Theorem 1 [1] Every oik-family O has an even number of room-partitions.

Given a vertex w ∈ V and a room-partition R, we get another room-
partition R′ distinct from R by traversing the exchange graph G(O, w) starting
in R and passing no edge twice. 2

If O is a family of 2-adjacent oiks then obviously vertices of V and V1 have
degrees 1 and 2 respectively. In this case the exchange graph has a very simple
structure: it is a disjoint union of simple paths whose ends form V and simple
cycles whose vertices form the rest of V1. These paths uniquely define the
traversing procedure, as well as a matching on the set V of room-partitions.

The above results can be generalized in many ways; for example, as follows.

Let δ : V → Z+ be a mapping of V into set Z+ of the non-negative integers.
A room-selection R is called a δ-selection if degR(v) = δ(v) for each v ∈ V .
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Given O and δ, let us define V as the set of all δ-selections and V1 as follows.

Let us fix a vertex w ∈ W such that δ(w) is odd. A skew (δ± 1)-selection
(or a dragonfly) is defined as a room-selection R′ such that degR′(w) = δ(w)−
1, there is a vertex u ∈ V such that degR′(u) = δ(u) + 1, and degR′(v) = δ(v)
for all other vertices v ∈ V \ {u,w}.

Given w and δ, let V1 be the set of all skew (δ ± 1)-selections. Finally,
the adjacency relation E on the vertex-set V ∪ V1 and the exchange graph
G = G(O, w) = G(V ∪ V1, E) are defined exactly as before. It is easy to verify
that all claims of Lemma 1 and Theorem 1 still hold.

Lemma 2 Vertices of V (δ-selections) and V1 (skew (δ ± 1)-selection ) have
odd and even degrees in G, respectively. No two vertices of V are adjacent. 2

Theorem 2 [1] Every oik-family O has an even number of δ-selections. Given
a vertex w ∈ V of odd δ(w) and a δ-selectionR, we get another room-partition
R′ distinct from R by traversing the exchange graph G(O, w) starting in R
and passing no edge twice. 2

1.3 Main applications of oiks

Several classical results can be explained in terms of oiks and exchange algo-
rithms, which, given a room partition find another one.

The Lemke-Howson algorithm [8] (of finding a Nash equilibrium in mixed
strategies in a bimatrix game) can be interpreted as the exchange algorithm
for two polytopal oiks.

The famous Sperner Lemma can be interpreted as Lemma 1 and Theorem 1
for an oik-family which consists of two oiks: a polytopal and Sperner one. In
this case, given a multi-colored simplicial facet of a polytope, the exchange
algorithm finds another one.

2 Every oik-family can be reduced to a pair of oiks one
of which is a Sperner oik

Given a d-dimensional polytope (or, more generally, a (d − 1)-dimensional
manifold) P whose n vertices are colored by d colors [d] = {1, . . . , d}, we also
assume that P is simplicial, that is, every facet of P contains only d vertices.
A facet is called multi-colored if its d vertices are colored by d distinct colors.
Our version of Sperner’s Lemma claims that the number of the multi-colored
facets is even; moreover, given one of them, another one is uniquely determined
by the exchange algorithm.

Let O1 = (V,R1) be an oik whose n vertices are colored by d colors,
c : V → [d]. A room R1 ∈ R1 is multi-colored if c(R1) = [d]. By Theorem 1,
the number of multi-colored rooms is even; moreover, given one of them,
another one can be obtained by the exchange algorithm.
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To see that Theorem 1 is applicable, let us add to the oik O1 a (n − d)-
dimensional Sperner oik O2 = (V,R2) defined on the same vertex-set V by
the coloring c as follows. A set R2 ⊆ V is a room of oik O2 if and only if
|R2| = n − d and the complementary set V \ R2 of cardinality d is multi-
colored; see Example 4. By this definition, a room R1 ∈ R1 is multi-colored in
oik O1 if and only if its complement R2 = V \R1 is a room of O2, or in other
words, sets R1 and R2 form a room-partition in the oik-pair O = (O1,O2).

Thus, Theorem 1 is applicable; in particular, it results in the standard
“geometrical” Sperner Lemmas when O1 is a PM-, M-, or P-oik; see Exam-
ple 1. Yet, in general, this approach is purely combinatorial and geometry
is ignored. Moreover, oik O1 might be not 2-adjacent. In this case, given a
room-partition, another one, defined in Theorem 1, is not necessarily unique.

Now letO = (O1,O2) be an arbitrary oik-pair defined on a common vertex-
set. Then, Theorem 1 results in the

(a) Sperner Lemma when O1 is a polytopal oik, while O2 is a Sperner oik;

(b) Scarf Theorem [11] when O1 is a polytopal oik, while O2 is a Scarf oik;

(c) Lemke-Howson algorithm [8] when the oiks O1 and O2 are polytopal.

Somewhat surprisingly, an arbitrary oik-family O = (O1, . . . ,Ok) is equiv-
alent with an oik-pair O′ = (Ok+1,O0), where Ok+1 = O1 + · · ·+Ok is a sum,
which will be defined below, and O0 is a Sperner oik, that is, the exchange
graphs of O and O′ are isomorphic. Hence, one can execute the exchange
algorithm for O′ rather than for O.

Remark 4 In particular, due to this reduction, the Scarf Theorem [11] can
be derived from the Sperner Lemma as well as from the Scarf Lemma. The
last observation is the main result of the recent paper by Kiraly and Pap [6].

The reduction is simple. Let O = (O1, . . . ,Ok) be an arbitrary oik-family
in which Oi = (V,Ri) is a di-dimensional oik for i ∈ [k] = {1, . . . , k} and∑k

i=1 di = n = |V |. First, let us define the sum Ok+1 =
∑k

i=1Oi as follows:
Ok+1 = (kV,Rk+1), where kV consists of k pairwise disjoint copies V1, . . . , Vk

of V and R ∈ Rk+1 if and only if R ∩ Vi is a room of the oik Oi = (Vi,Ri)
(which is a copy of Oi = (V,Ri)) for all i ∈ [k] = {1, . . . , k}. In particular,
|kV | = kn and dk+1 =

∑k
i=1 di = n are the size and dimension of the oik Ok+1.

Let us color n vertices of V by n pairwise distinct colors and then copy
this coloring in every Vi, i ∈ [k], thus, coloring kn vertices of the set kV
in n colors. This coloring standardly defines the Sperner oik O0 = (kV,R0)
in which R ∈ R0 if and only if kV \ R is multi-colored. Thus, the oik-pair
O′ = (Ok+1,O′) is defined. Let us choose two vertices: w ∈ V and w′ ∈ kV .

Theorem 3 Two exchange graphs G = G(O, w) and G ′ = G(O′, w′) are iso-
morphic whenever vertices w and w′ are of the same color.
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The proof can be found in [2].

It is important to notice that the obtained reduction is exponential in k
but it is polynomial in size of O. Hence, it is polynomial when k is a constant.

Thus, the room-partitions of an arbitrary oik-family O = {O1, . . . ,Ok}
are in one-to-one correspondence with the multi-colored rooms of the sum
O1+ . . .+Ok. In particular, instead of looking for another room-partition, one
can search for another multi-colored room. This shows a sort of universality
of the Sperner Lemma, cf. [6].
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