

Chapter 7

Matroid Partition

Jack Edmonds

Introduction by Jack Edmonds

This article, “Matroid Partition”, which first appeared in the book edited by
George Dantzig and Pete Veinott, is important to me for many reasons: First for per-
sonal memories of my mentors, Alan J. Goldman, George Dantzig, and Al Tucker.
Second, for memories of close friends, as well as mentors, Al Lehman, Ray Fulker-
son, and Alan Hoffman. Third, for memories of Pete Veinott, who, many years after
he invited and published the present paper, became a closest friend. And, finally,
for memories of how my mixed-blessing obsession with good characterizations and
good algorithms developed.

Alan Goldman was my boss at the National Bureau of Standards in Washington,
D.C., now the National Institutes of Science and Technology, in the suburbs. He
meticulously vetted all of my math including this paper, and I would not have been
a math researcher at all if he had not encouraged it when I was a university drop-out
trying to support a baby and stay-at-home teenage wife. His mentor at Princeton,
Al Tucker, through him of course, invited me with my child and wife to be one
of the three junior participants in a 1963 Summer of Combinatorics at the Rand
Corporation in California, across the road from Muscle Beach. The Bureau chiefs
would not approve this so I quit my job at the Bureau so that I could attend. At the
end of the summer Alan hired me back with a big raise.

Dantzig was and still is the only historically towering person I have known. He
cared about me from a few days before my preaching at Rand about blossoms and
about good algorithms and good characterizations. There were some eminent com-
binatorial hecklers at my presentation but support from Dantzig, and Alan Hoffman,
made me brave.

Jack Edmonds
Department of Combinatorics and Optimization, University of Waterloo, Canada
e-mail: jackedmonds@rogers.com

199




200 Jack Edmonds

I think of Bertrand Russell, Alan Turing, and George Dantzig as the three most
important philosophers of the last century. During an infrequent visit to California
from Washington, D.C., sometime in the 60s, Dantzig took me, a wife, and three
kids, to Marineland and also to see a new shopping mall in order to prove to us that
having a ceiling of a certain height in his carefully planned Compact City is as good
as a sky.

One time when I unexpectedly dropped in on Dantzig, the thrill of my life was
him asking me to lecture to his linear programming class about how the number
of pivots of a simplex method can grow exponentially for non-degenerate linear
programming formulations of shortest path problems, and also asking me to vet
contributions for a math programming symposium which he was organizing.

One of my great joys with George Dantzig was when a friend working at Hewlett-
Packard asked me to come discuss the future of operations research with his artificial
intelligence colleagues. I was discouraged when no one I knew in O.R. seemed in-
terested in helping—that is, until I asked George. He told my second wife Kathie
and me that he was a neighbor and had socialized with Mr. Hewlett, or was it
Mr. Packard, for years, and had never been invited to HP, two blocks away. George
took over the show and was wonderful. Kathie video-taped it. The next morning he
asked if she had made him a copy yet.

Al Tucker made me a Research Associate and put me in charge of his Com-
binatorics Seminar at Princeton during 1963–64. Combinatorists whom I wanted
to meet accepted paying their own way to speak at my ‘Princeton Combinatorics
and Games Seminar’. However, except for Ron Graham who came over from Bell,
and Moses Richardson who came down from City University, they were unable to
schedule their visits. So I hastily organized a Princeton Conference in the spring of
1964 where the eminent seminar invitees could lecture to each other.

At that conference I met Al Lehman who led me, by his matroidal treatment
of what he called the Shannon switching game, to see that matroids are impor-
tant for oracle-based good algorithms and characterizations. I persuaded Al, along
with Chris Witzgall, to come work at the Bureau of Standards, and immediately we
started looking for people to participate in a two-week Matroid Workshop at the Bu-
reau of Standards in autumn 1964. We didn’t find more than six who had even heard
of the term ‘matroid’. About twenty serious people came to it, including Ray Fulk-
erson, George Minty, Henry Crapo, Dan Younger, Neil Robertson, and Bill Tutte.
Within a year it seemed the whole world was discovering matroids.

The Bureau was delighted at the prospect of hiring Al Lehman. However, an
aftermath of McCartheism left the Bureau with the rule that new employees had to
take an oath of loyalty. The early computer-guru, Ida Rhodes, actually tugged at Al’s
arm to try to get him to take the oath but he wouldn’t. Instead he took a research job
with a Johns Hopkins satellite of the U.S. Army which did not require such an oath.
He literally picketed the Matroid Workshop, speaking to whomever would listen
about the ‘Bureau of Double Standards’. We stayed friends for the many years until
his recent death in Toronto.

7 Matroid Partition 201

At the same workshop, Gian-Carlo Rota conceived of and started organizing the
Journal of Combinatorial Theory. He also insisted that the ‘ineffably cacophonic
word matroid’ be replaced by ‘combinatorial geometry’.

George Minty was an especially sweet and brilliant participant. He wrote a paper
which Bob Bland credits with being a precursor of oriented matroids. He spent years
afterwards on successfully extending the good algorithm for optimum matchings in
a graph to optimum independent sets in a clawfree graph. His work is still the most
interesting aspect of matching theory.

During the year after the Matroid Workshop, Ray Fulkerson and I regularly spent
hours talking math by government telephone between Santa Monica and Washing-
ton. Ray and I never did learn how to work computers, and though I think the pro-
totype of email did exist back then in our government circles, he and I didn’t know
about it. One of the outcomes of our talk was combining a version of the matroid
partitioning algorithm described in the paper here with Ray’s interest in doing ev-
erything possible by using network flow methods.

My huff about him and Ellis Johnson calling the blossom method “a primal-
dual method” led me to look for algorithms for network flow problems which were
polytime relative to the number of bits in the capacities as well as in the costs.
The reason I had presented the blossom method only for 1-matchings is that for
b-matchings I could not call it a “good algorithm” until I had figured out how to
do that for network flows. Once it’s done for flows, it’s easy to reduce optimum
b-matchings to a flow problem and a b-matching problem where the b is ones and
twos. Dick Karp was independently developing good algorithms for network flows
and so much later I published with Dick instead of, as intended, with Ray and Ellis.
I enjoyed working with Ray and I coined the terms “clutter” and “blocker”. I can’t
remember who suggested the term “greedy” but it must have been Alan Goldman
and probably Ray as well.

It was important to me to ask Ray to check with the subadditive set function
expert he knew about submodular set functions. When the answer came back that
they are probably the same as convex functions of additive set functions, I knew I
had a new tiger by the tail.

Ray and I liked to show off to each other. I bragged to him about discovering the
disjoint branchings theorem, mentioned later. Trouble is, I then became desperate to
find quickly a correction of my faulty proof. I think I would have done a better job
on the theorem if I had not been frantic to cover my hubris.

During a phone call, Ray mentioned that one day later, four months after the
Matroid Workshop, there would be a combinatorics workshop in Waterloo. My boss
Alan Goldman rescued me as usual and I quickly hopped a plane to Canada to sleep
along with George Minty on sofas in Tutte’s living room.

Neil Robertson, a meticulous note-taker, had reported to Crispin Nash-Williams
on my Matroid Workshop lectures. Crispin, by his own description, was too enthu-
siastic about them. He was giving a keynote lecture about matroid partitioning on
the first morning of this Waterloo workshop. I felt compelled immediately after his
talk to speak for an impromptu hour on the following:

202 Jack Edmonds

Theorem 1. A non-negative, monotone, submodular set function, f (S), of the sub-
sets S of a finite set E, is called a polymatroid function on E. For any integer-
valued polymatroid function on E, let F be the family of subsets J of E such
that for every non-empty subset S of J, the cardinality of S is at most f (S). Then
M = (E,F) is a matroid. Its rank function is, for every subset A of E, r(A), mean-
ing max[cardinality of a subset of A which is in F] = min[f (S)+cardinality of (A\
S) for any subset S of A].

After this opening of the Waterloo meeting I urgently needed a mimeographed
abstract handout and so I submitted Theorem 1.

The theorem is dramatic because people had only seen matroids as an axiomatic
abstraction of algebraic independence, and not as something so concrete as a kind
of linear programming construction quite different from algebraic independence.

I tried to explain on that snowy April Waterloo morning how the theorem is a
corollary of a theory of a class of polyhedra, called polymatroids, given by non-
negative vectors x satisfying inequality systems of the form:

For every subset S of E, the sum of the coordinates of x indexed by the j in S is
at most f (S).

However, even now, this is often outside the interest of graph theorists, or formal
axiomatists. I am sorry when expositions of matroid theory still treat the subject only
as axiomatic abstract algebra, citing the mimeographed abstract of that Waterloo
meeting with no hint about the linear programming foundations of pure matroid
theory.

What does Theorem 1 have to do with matroid partitioning? Well—the rank func-
tion of a matroid is a polymatroid function, and hence so is the sum of the rank
functions of any family of matroids all on the same set E. Hence a special case of
Theorem 1, applied to this sum, yields a matroid on E as the ‘sum’ of matroids on E.
I had hoped to understand the prime matroids relative to this sum, but, so far, not
much has come of that.

Suppose we have an oracle which for an integer polymatroid function f (S) on E

gives the value of f (S) for any subset S of E. Then the theorem gives an easy way
to recognize when a given subset J of E is not a member of F , in other words not
independent in the matroid determined by Theorem 1. Simply observe some single
subset S of J having cardinality greater than f (S).

Does there exist an easy way to recognize when a set J is independent? The
answer is yes. For a general integer polymatroid function f , this easy way needs
some of the linear programming theory which led me to Theorem 1, which I will
describe in a moment.

However for the special case of Theorem 1 where f is the sum of a given family,
say H, of matroid rank functions, an easy way to recognize that a set J is indepen-
dent, which even the most lp resistant combinatorist can appreciate, is given by the
‘matroid partition theorem’ of the present paper: a set J is independent if and only
if it can be partitioned into a family of sets, which correspond to the members of H,
and which are independent respectively in the matroids of H.

Thus, relative to oracles for the matroids of H, for the matroid M determined as
in Theorem 1 by the f which is the sum of the rank functions of H, we have a ‘good

7 Matroid Partition 203

characterization’ for whether or not a subset J of E is independent in M. To me this
meant that there was an excellent chance of proving the matroid partition theorem
by a good algorithm which, for a given J, decides whether or not J is independent
in matroid M. That is what the present paper does.

Having an instance of a good characterization relative to an oracle, and having
a good algorithm relative to the oracle which proves the good characterization, was
the main point and motivation for the subject.

One reason I like the choice of “Matroid Partition” for the present volume is
that, as far as I know, it is the first time that the idea of what is now called NP
explicitly appears in mathematics. The idea of NP is what forced me to try to do
some mathematics, and it has been my obsession since 1962.

I talked about it with Knuth at about that time and ten years later he asked me
to vote on whether to call it NP. I regret that I did not respond. I did not see what
non-deterministic had to do with it. NP is a very positive thing and it has saddened
me for these many years that the justified success of the theory of NP-completeness
has so often been interpreted as giving a bad rap to NP.

Let me turn my attention to linear programming which gave me Theorem 1,
which led to the present paper.

Given the enormous success that the marriage problem and network flows had
had with linear programming, I wanted to understand the goodness of optimum
spanning trees in the context of linear programming. I wanted to find some combi-
natorial example of linear programming duality which was not an optimum network
flow problem. Until optimum matchings, every min max theorem in combinatorics
which was understood to be linear programming was in fact derivable from network
flows—thanks in great measure to Alan Hoffman and Ray Fulkerson. Since that was
(slightly) before my time, I took it for granted as ancient.

It seemed to be more or less presumed that the goodness of network flow came
from the fact that an optimum flow problem could be written explicitly as a lin-
ear program. The Farkas lemma and the duality theorem of linear programming are
good characterizations for explicitly written linear programs. It occurred to me, pre-
ceding any success with the idea, that if you know a polytope as the hull of a set
of points with a good, i.e., easily recognizable, description, and you also know that
polytope as the solution-set of a set of inequalities with a good description, then us-
ing lp duality you have a good characterization. And I hoped, and still hope, that if
you have good characterization then there exists a good algorithm which proves it.
This philosophy worked for optimum matchings. It eventually worked for explicitly
written linear programs. I hoped in looking at spanning trees, and I still hope, that it
works in many other contexts.

The main thing I learned about matroids from my forefathers, other than Lehman,
is that the edge-sets of forests in a graph are the independent sets of a matroid, called
the matroid of the graph. What is it about a matroid which could be relevant to a set
of linear inequalities determining the polytope which is the hull of the 0-1 vectors of
independent sets of the matroid? The rank function of course. Well what is it about
the rank function of a matroid which makes that polytope extraordinarily nice for

204 Jack Edmonds

optimizing over? That it is a polymatroid function of course. So we’re on our way
to being pure matroid theorists.

A “polymatroid” is the polytope P(f) of non-negative solutions to the system of
inequalities where the vectors of coefficients of the vector of variables is the 0-1
vectors of subsets S of E and the r.h.s. constants are the values of the polymatroidal
function f (S). It turns out that it is as easy, relative to an oracle for f , to optimimize
any linear function over P(f), as it is to find a maximum weight forest in an edge-
weighted graph. Hence it is easy to describe a set of points for which P(f) is the
convex hull. Where f is the rank function of a matroid, those points are the 0-1
vectors of the independent sets of the matroid, in particular of the edge-sets of the
forests for the matroid of a graph.

A polymatroid has other nice properties. For example, one especially relevant
here is that any polymatroid intersected with any box, 0 ≤ x ≤ a, is a polymatroid.
In particular, any integer-valued polymatroid function gives a polymatroid which
intersected with a unit cube, 0 ≤ x ≤ 1, is the polytope of a matroid. That is Theo-
rem 1.

So what? Is this linear programming needed to understand Theorem 1? Not to
prove it, though it helps. For Theorem 1, rather than for any box, the lp proof can
be specialized, though not simplified, to being more elementary. However linear
programming helps answer “yes” to the crucial question asked earlier: Does there
exist an easy way to recognize when a set J is independent?

It is obvious that the 0-1 vector of the set J is in the unit box. Using the oracle
for function f we can easily recognize if J is not independent by seeing just one
of the inequalities defining P(f) violated by the 0-1 vector of J. But if the vector
of J satisfies all of those inequalities, and hence J is independent in the matroid M

described by Theorem 1, how can we recognize that? Well using linear program-
ming theory you can immediately answer. We have mentioned that we have a very
easy algorithm for optimizing over polytope P(f) and so, where n is the size of the
ground set E which indexes the coordinates of the points of P(f), we have an easy
way to recognize any size n+1 subset of points each of which optimizes some linear
objective over P(f). Linear programming theory tells that the 0-1 vector of J is in
P(f), and hence J is independent, if and only if it is a convex combination of some
n+1 points each of which optimizes some linear function over P(f).

That’s it. We have a good characterization of whether or not a set J is independent
in the matroid described by Theorem 1. It takes a lot more work to say that directly
without linear programming. We do that in the paper here with the matroid partition
theorem for the case where f is the sum of some given matroid rank functions.

For concreteness assume that a is any vector of non-negative integers correspond-
ing to the elements of finite set E. Of course Theorem 1 is the special case for a unit
box of the theorem which says that box, 0 ≤ x ≤ a, intersected with integer polyma-
troid, P(f), is an integer polymatroid. Call it P(f ,a).

The rank r(f ,a) of P(f ,a), meaning the maximum sum of coordinates of an in-
teger valued vector x in P(f ,a) is equal to the minimum of f (S) + the sum of the
coordinates of a which correspond to E \S. If you know the meaning of a submod-
ular set function, the proof of this is very easy. At the same time, you prove that

7 Matroid Partition 205

the max sum of x is achieved by taking any integer valued x in P(f ,a), such as the
zero vector, and pushing up the value of its coordinates in any way you can while
staying in P(f ,a). (By analogy with matroid, having this property is in fact the way
we define polymatroid.) The only difficulty with this otherwise easy algorithm is
deciding how to be sure that the x stays in P(f ,a). Hence the crux of the problem
algorithmically is getting an algorithm for deciding whether or not a given x is in
P(f ,a). We do get a good characterization for recognizing whether or not an x is
in P(f ,a) in the same way we suggested for characterizing whether or not a subset
J of E is member of matroid M. Hence from this we have a good characterization
of the rank r(f ,a) without necessarily having a good algorithm for determining the
rank r(f ,a).

Any integer-valued submodular set function g(S), not necessarily monotone or
non-negative, can be easily represented in the form constant + f (S) + the sum of
the coordinates of a which correspond to E \ S, where f is an integer polymatroid
function and a is a vector of non-negative integers. Hence, since the mid sixties,
we have had a good characterization of the minimum of a general integer-valued
submodular function, relative to an oracle for evaluating it. Lovász expressed to
me a strong interest in finding a good algorithm for it in the early seventies. He,
Grötschel, and Schrijver, showed in the late seventies that the ellipsoid method for
linear programming officially provides such an algorithm. However it has taken
many years, many papers, and the efforts of many people, to get satisfying direct
algorithms, and this currently still has wide research interest. We have observed
here how the matroid partitioning algorithm was a first step. The methods by which
Dick Karp and I got algorithms for network flows was another first step.

There are other interesting things to say about matroid and submodular set-
function optimization theory which I won’t mention, but there is one I would like
to mention. Gilberto Calvillo and I have developed good direct algorithms for the
optimum branching system problem, which might have some down to earth interest.
Given a directed graph G, a value c(j) and a capacity d(j) for each edge, find a fam-
ily of k branchings which together do not exceed the capacity of any edge and which
together maximize total value. A branching in G is a forest such that each node of G

has at most one edge of the forest directed toward it. Of course there are a number of
equivalent problems but this one is convenient to say and to treat. By looking at the
study of branchings and the study of optimum network flow in chapters of combi-
natorial optimization you might agree that the optimum branching systems problem
is a natural gap. The analogous problem for forest systems in an undirected graph is
solved by the matroid partitioning algorithm here together with the matroid greedy
algorithm. The optimum branching system problem is quite different. It is solved in
principle by a stew of matroid ideas including the ones here, and was first done that
way, but it is better treated directly.

206 Jack Edmonds

The following article originally appeared as:

J. Edmonds, Matroid Partition, Mathematics of the Decision Sciences: Part 1
(G.B. Dantzig and A.F. Veinott, eds.), American Mathematical Society, 1968, pp.
335–345.

Copyright c© 1968 The American Mathematical Society.

Reprinted by permission from the The American Mathematical Society.

7 Matroid Partition 207

208 Jack Edmonds

7 Matroid Partition 209

210 Jack Edmonds

7 Matroid Partition 211

212 Jack Edmonds

7 Matroid Partition 213

214 Jack Edmonds

7 Matroid Partition 215

216 Jack Edmonds

7 Matroid Partition 217

