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Chapter 7
Matroid Partition

Jack Edmonds

Introduction by Jack Edmonds

This article, “Matroid Partition”, which first appeared in the book edited by
George Dantzig and Pete Veinott, is important to me for many reasons: First for per-
sonal memories of my mentors, Alan J. Goldman, George Dantzig, and Al Tucker.
Second, for memories of close friends, as well as mentors, Al Lehman, Ray Fulker-
son, and Alan Hoffman. Third, for memories of Pete Veinott, who, many years after
he invited and published the present paper, became a closest friend. And, finally,
for memories of how my mixed-blessing obsession with good characterizations and
good algorithms developed.

Alan Goldman was my boss at the National Bureau of Standards in Washington,
D.C., now the National Institutes of Science and Technology, in the suburbs. He
meticulously vetted all of my math including this paper, and I would not have been
a math researcher at all if he had not encouraged it when I was a university drop-out
trying to support a baby and stay-at-home teenage wife. His mentor at Princeton,
Al Tucker, through him of course, invited me with my child and wife to be one
of the three junior participants in a 1963 Summer of Combinatorics at the Rand
Corporation in California, across the road from Muscle Beach. The Bureau chiefs
would not approve this so I quit my job at the Bureau so that I could attend. At the
end of the summer Alan hired me back with a big raise.

Dantzig was and still is the only historically towering person I have known. He
cared about me from a few days before my preaching at Rand about blossoms and
about good algorithms and good characterizations. There were some eminent com-
binatorial hecklers at my presentation but support from Dantzig, and Alan Hoffman,
made me brave.

Jack Edmonds
Department of Combinatorics and Optimization, University of Waterloo, Canada
e-mail: jackedmonds@rogers.com

M. Jiinger et al. (eds.), 50 Years of Integer Programming 1958-2008, 199
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I think of Bertrand Russell, Alan Turing, and George Dantzig as the three most
important philosophers of the last century. During an infrequent visit to California
from Washington, D.C., sometime in the 60s, Dantzig took me, a wife, and three
kids, to Marineland and also to see a new shopping mall in order to prove to us that
having a ceiling of a certain height in his carefully planned Compact City is as good
as a sky.

One time when I unexpectedly dropped in on Dantzig, the thrill of my life was
him asking me to lecture to his linear programming class about how the number
of pivots of a simplex method can grow exponentially for non-degenerate linear
programming formulations of shortest path problems, and also asking me to vet
contributions for a math programming symposium which he was organizing.

One of my great joys with George Dantzig was when a friend working at Hewlett-
Packard asked me to come discuss the future of operations research with his artificial
intelligence colleagues. I was discouraged when no one I knew in O.R. seemed in-
terested in helping—that is, until I asked George. He told my second wife Kathie
and me that he was a neighbor and had socialized with Mr. Hewlett, or was it
Mr. Packard, for years, and had never been invited to HP, two blocks away. George
took over the show and was wonderful. Kathie video-taped it. The next morning he
asked if she had made him a copy yet.

Al Tucker made me a Research Associate and put me in charge of his Com-
binatorics Seminar at Princeton during 1963-64. Combinatorists whom I wanted
to meet accepted paying their own way to speak at my ‘Princeton Combinatorics
and Games Seminar’. However, except for Ron Graham who came over from Bell,
and Moses Richardson who came down from City University, they were unable to
schedule their visits. So I hastily organized a Princeton Conference in the spring of
1964 where the eminent seminar invitees could lecture to each other.

At that conference I met Al Lehman who led me, by his matroidal treatment
of what he called the Shannon switching game, to see that matroids are impor-
tant for oracle-based good algorithms and characterizations. I persuaded Al, along
with Chris Witzgall, to come work at the Bureau of Standards, and immediately we
started looking for people to participate in a two-week Matroid Workshop at the Bu-
reau of Standards in autumn 1964. We didn’t find more than six who had even heard
of the term ‘matroid’. About twenty serious people came to it, including Ray Fulk-
erson, George Minty, Henry Crapo, Dan Younger, Neil Robertson, and Bill Tutte.
Within a year it seemed the whole world was discovering matroids.

The Bureau was delighted at the prospect of hiring Al Lehman. However, an
aftermath of McCartheism left the Bureau with the rule that new employees had to
take an oath of loyalty. The early computer-guru, Ida Rhodes, actually tugged at Al’s
arm to try to get him to take the oath but he wouldn’t. Instead he took a research job
with a Johns Hopkins satellite of the U.S. Army which did not require such an oath.
He literally picketed the Matroid Workshop, speaking to whomever would listen
about the ‘Bureau of Double Standards’. We stayed friends for the many years until
his recent death in Toronto.
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At the same workshop, Gian-Carlo Rota conceived of and started organizing the
Journal of Combinatorial Theory. He also insisted that the ‘ineffably cacophonic
word matroid’ be replaced by ‘combinatorial geometry’.

George Minty was an especially sweet and brilliant participant. He wrote a paper
which Bob Bland credits with being a precursor of oriented matroids. He spent years
afterwards on successfully extending the good algorithm for optimum matchings in
a graph to optimum independent sets in a clawfree graph. His work is still the most
interesting aspect of matching theory.

During the year after the Matroid Workshop, Ray Fulkerson and I regularly spent
hours talking math by government telephone between Santa Monica and Washing-
ton. Ray and I never did learn how to work computers, and though I think the pro-
totype of email did exist back then in our government circles, he and I didn’t know
about it. One of the outcomes of our talk was combining a version of the matroid
partitioning algorithm described in the paper here with Ray’s interest in doing ev-
erything possible by using network flow methods.

My huff about him and Ellis Johnson calling the blossom method “a primal-
dual method” led me to look for algorithms for network flow problems which were
polytime relative to the number of bits in the capacities as well as in the costs.
The reason I had presented the blossom method only for 1-matchings is that for
b-matchings I could not call it a “good algorithm” until I had figured out how to
do that for network flows. Once it’s done for flows, it’s easy to reduce optimum
b-matchings to a flow problem and a b-matching problem where the b is ones and
twos. Dick Karp was independently developing good algorithms for network flows
and so much later I published with Dick instead of, as intended, with Ray and Ellis.
I enjoyed working with Ray and I coined the terms “clutter” and “blocker”. I can’t
remember who suggested the term “greedy” but it must have been Alan Goldman
and probably Ray as well.

It was important to me to ask Ray to check with the subadditive set function
expert he knew about submodular set functions. When the answer came back that
they are probably the same as convex functions of additive set functions, I knew I
had a new tiger by the tail.

Ray and I liked to show off to each other. I bragged to him about discovering the
disjoint branchings theorem, mentioned later. Trouble is, I then became desperate to
find quickly a correction of my faulty proof. I think I would have done a better job
on the theorem if I had not been frantic to cover my hubris.

During a phone call, Ray mentioned that one day later, four months after the
Matroid Workshop, there would be a combinatorics workshop in Waterloo. My boss
Alan Goldman rescued me as usual and I quickly hopped a plane to Canada to sleep
along with George Minty on sofas in Tutte’s living room.

Neil Robertson, a meticulous note-taker, had reported to Crispin Nash-Williams
on my Matroid Workshop lectures. Crispin, by his own description, was too enthu-
siastic about them. He was giving a keynote lecture about matroid partitioning on
the first morning of this Waterloo workshop. I felt compelled immediately after his
talk to speak for an impromptu hour on the following:
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Theorem 1. A non-negative, monotone, submodular set function, f(S), of the sub-
sets S of a finite set E, is called a polymatroid function on E. For any integer-
valued polymatroid function on E, let F' be the family of subsets J of E such
that for every non-empty subset S of J, the cardinality of S is at most f(S). Then
M = (E,F) is a matroid. Its rank function is, for every subset A of E, r(A), mean-
ing max|[cardinality of a subset of A which is in F] = min[f(S) + cardinality of (A
S) for any subset S of A].

After this opening of the Waterloo meeting I urgently needed a mimeographed
abstract handout and so I submitted Theorem 1.

The theorem is dramatic because people had only seen matroids as an axiomatic
abstraction of algebraic independence, and not as something so concrete as a kind
of linear programming construction quite different from algebraic independence.

I tried to explain on that snowy April Waterloo morning how the theorem is a
corollary of a theory of a class of polyhedra, called polymatroids, given by non-
negative vectors x satisfying inequality systems of the form:

For every subset S of E, the sum of the coordinates of x indexed by the j in S is
at most f(S).

However, even now, this is often outside the interest of graph theorists, or formal
axiomatists. [ am sorry when expositions of matroid theory still treat the subject only
as axiomatic abstract algebra, citing the mimeographed abstract of that Waterloo
meeting with no hint about the linear programming foundations of pure matroid
theory.

What does Theorem 1 have to do with matroid partitioning? Well—the rank func-
tion of a matroid is a polymatroid function, and hence so is the sum of the rank
functions of any family of matroids all on the same set E£. Hence a special case of
Theorem 1, applied to this sum, yields a matroid on E as the ‘sum’ of matroids on E.
I had hoped to understand the prime matroids relative to this sum, but, so far, not
much has come of that.

Suppose we have an oracle which for an integer polymatroid function f(S) on E
gives the value of f(S) for any subset S of E. Then the theorem gives an easy way
to recognize when a given subset J of E is not a member of F, in other words not
independent in the matroid determined by Theorem 1. Simply observe some single
subset S of J having cardinality greater than f(S).

Does there exist an easy way to recognize when a set J is independent? The
answer is yes. For a general integer polymatroid function f, this easy way needs
some of the linear programming theory which led me to Theorem 1, which I will
describe in a moment.

However for the special case of Theorem 1 where f is the sum of a given family,
say H, of matroid rank functions, an easy way to recognize that a set J is indepen-
dent, which even the most Ip resistant combinatorist can appreciate, is given by the
‘matroid partition theorem’ of the present paper: a set J is independent if and only
if it can be partitioned into a family of sets, which correspond to the members of H,
and which are independent respectively in the matroids of H.

Thus, relative to oracles for the matroids of H, for the matroid M determined as
in Theorem 1 by the f which is the sum of the rank functions of H, we have a ‘good
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characterization’ for whether or not a subset J of E is independent in M. To me this
meant that there was an excellent chance of proving the matroid partition theorem
by a good algorithm which, for a given J, decides whether or not J is independent
in matroid M. That is what the present paper does.

Having an instance of a good characterization relative to an oracle, and having
a good algorithm relative to the oracle which proves the good characterization, was
the main point and motivation for the subject.

One reason I like the choice of “Matroid Partition™ for the present volume is
that, as far as I know, it is the first time that the idea of what is now called NP
explicitly appears in mathematics. The idea of NP is what forced me to try to do
some mathematics, and it has been my obsession since 1962.

I talked about it with Knuth at about that time and ten years later he asked me
to vote on whether to call it NP. I regret that I did not respond. I did not see what
non-deterministic had to do with it. NP is a very positive thing and it has saddened
me for these many years that the justified success of the theory of NP-completeness
has so often been interpreted as giving a bad rap to NP.

Let me turn my attention to linear programming which gave me Theorem 1,
which led to the present paper.

Given the enormous success that the marriage problem and network flows had
had with linear programming, I wanted to understand the goodness of optimum
spanning trees in the context of linear programming. I wanted to find some combi-
natorial example of linear programming duality which was not an optimum network
flow problem. Until optimum matchings, every min max theorem in combinatorics
which was understood to be linear programming was in fact derivable from network
flows—thanks in great measure to Alan Hoffman and Ray Fulkerson. Since that was
(slightly) before my time, I took it for granted as ancient.

It seemed to be more or less presumed that the goodness of network flow came
from the fact that an optimum flow problem could be written explicitly as a lin-
ear program. The Farkas lemma and the duality theorem of linear programming are
good characterizations for explicitly written linear programs. It occurred to me, pre-
ceding any success with the idea, that if you know a polytope as the hull of a set
of points with a good, i.e., easily recognizable, description, and you also know that
polytope as the solution-set of a set of inequalities with a good description, then us-
ing Ip duality you have a good characterization. And I hoped, and still hope, that if
you have good characterization then there exists a good algorithm which proves it.
This philosophy worked for optimum matchings. It eventually worked for explicitly
written linear programs. I hoped in looking at spanning trees, and I still hope, that it
works in many other contexts.

The main thing I learned about matroids from my forefathers, other than Lehman,
is that the edge-sets of forests in a graph are the independent sets of a matroid, called
the matroid of the graph. What is it about a matroid which could be relevant to a set
of linear inequalities determining the polytope which is the hull of the 0-1 vectors of
independent sets of the matroid? The rank function of course. Well what is it about
the rank function of a matroid which makes that polytope extraordinarily nice for
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optimizing over? That it is a polymatroid function of course. So we’re on our way
to being pure matroid theorists.

A “polymatroid” is the polytope P(f) of non-negative solutions to the system of
inequalities where the vectors of coefficients of the vector of variables is the 0-1
vectors of subsets S of E and the r.h.s. constants are the values of the polymatroidal
function f(S). It turns out that it is as easy, relative to an oracle for f, to optimimize
any linear function over P(f), as it is to find a maximum weight forest in an edge-
weighted graph. Hence it is easy to describe a set of points for which P(f) is the
convex hull. Where f is the rank function of a matroid, those points are the 0-1
vectors of the independent sets of the matroid, in particular of the edge-sets of the
forests for the matroid of a graph.

A polymatroid has other nice properties. For example, one especially relevant
here is that any polymatroid intersected with any box, 0 < x < a, is a polymatroid.
In particular, any integer-valued polymatroid function gives a polymatroid which
intersected with a unit cube, 0 < x < 1, is the polytope of a matroid. That is Theo-
rem 1.

So what? Is this linear programming needed to understand Theorem 1? Not to
prove it, though it helps. For Theorem 1, rather than for any box, the Ip proof can
be specialized, though not simplified, to being more elementary. However linear
programming helps answer “yes” to the crucial question asked earlier: Does there
exist an easy way to recognize when a set J is independent?

It is obvious that the 0-1 vector of the set J is in the unit box. Using the oracle
for function f we can easily recognize if J is not independent by seeing just one
of the inequalities defining P(f) violated by the 0-1 vector of J. But if the vector
of J satisfies all of those inequalities, and hence J is independent in the matroid M
described by Theorem 1, how can we recognize that? Well using linear program-
ming theory you can immediately answer. We have mentioned that we have a very
easy algorithm for optimizing over polytope P(f) and so, where 7 is the size of the
ground set E which indexes the coordinates of the points of P(f), we have an easy
way to recognize any size n+ 1 subset of points each of which optimizes some linear
objective over P(f). Linear programming theory tells that the 0-1 vector of J is in
P(f), and hence J is independent, if and only if it is a convex combination of some
n+ 1 points each of which optimizes some linear function over P(f).

That’s it. We have a good characterization of whether or not a set J is independent
in the matroid described by Theorem 1. It takes a lot more work to say that directly
without linear programming. We do that in the paper here with the matroid partition
theorem for the case where f is the sum of some given matroid rank functions.

For concreteness assume that a is any vector of non-negative integers correspond-
ing to the elements of finite set E. Of course Theorem 1 is the special case for a unit
box of the theorem which says that box, 0 < x < g, intersected with integer polyma-
troid, P(f), is an integer polymatroid. Call it P(f,a).

The rank r(f,a) of P(f,a), meaning the maximum sum of coordinates of an in-
teger valued vector x in P(f,a) is equal to the minimum of f(S) + the sum of the
coordinates of a which correspond to E \ S. If you know the meaning of a submod-
ular set function, the proof of this is very easy. At the same time, you prove that
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the max sum of x is achieved by taking any integer valued x in P(f,a), such as the
zero vector, and pushing up the value of its coordinates in any way you can while
staying in P(f,a). (By analogy with matroid, having this property is in fact the way
we define polymatroid.) The only difficulty with this otherwise easy algorithm is
deciding how to be sure that the x stays in P(f,a). Hence the crux of the problem
algorithmically is getting an algorithm for deciding whether or not a given x is in
P(f,a). We do get a good characterization for recognizing whether or not an x is
in P(f,a) in the same way we suggested for characterizing whether or not a subset
J of E is member of matroid M. Hence from this we have a good characterization
of the rank r(f,a) without necessarily having a good algorithm for determining the
rank r(f,a).

Any integer-valued submodular set function g(), not necessarily monotone or
non-negative, can be easily represented in the form constant + f(S) + the sum of
the coordinates of a which correspond to E \ S, where f is an integer polymatroid
function and a is a vector of non-negative integers. Hence, since the mid sixties,
we have had a good characterization of the minimum of a general integer-valued
submodular function, relative to an oracle for evaluating it. Lovasz expressed to
me a strong interest in finding a good algorithm for it in the early seventies. He,
Grotschel, and Schrijver, showed in the late seventies that the ellipsoid method for
linear programming officially provides such an algorithm. However it has taken
many years, many papers, and the efforts of many people, to get satisfying direct
algorithms, and this currently still has wide research interest. We have observed
here how the matroid partitioning algorithm was a first step. The methods by which
Dick Karp and I got algorithms for network flows was another first step.

There are other interesting things to say about matroid and submodular set-
function optimization theory which I won’t mention, but there is one I would like
to mention. Gilberto Calvillo and I have developed good direct algorithms for the
optimum branching system problem, which might have some down to earth interest.
Given a directed graph G, a value ¢(j) and a capacity d(j) for each edge, find a fam-
ily of k branchings which together do not exceed the capacity of any edge and which
together maximize total value. A branching in G is a forest such that each node of G
has at most one edge of the forest directed toward it. Of course there are a number of
equivalent problems but this one is convenient to say and to treat. By looking at the
study of branchings and the study of optimum network flow in chapters of combi-
natorial optimization you might agree that the optimum branching systems problem
is a natural gap. The analogous problem for forest systems in an undirected graph is
solved by the matroid partitioning algorithm here together with the matroid greedy
algorithm. The optimum branching system problem is quite different. It is solved in
principle by a stew of matroid ideas including the ones here, and was first done that
way, but it is better treated directly.
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The following article originally appeared as:

J. Edmonds, Matroid Partition, Mathematics of the Decision Sciences: Part 1
(G.B. Dantzig and A.F. Veinott, eds.), American Mathematical Society, 1968, pp.
335-345.

Copyright (© 1968 The American Mathematical Society.

Reprinted by permission from the The American Mathematical Society.
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Jack Edmonds

Matroid Partition

1. Introduction. Matroids can be regarded as a certain abstraction
of matrices. They represent properties of matrices which are
invariant under elementary row operations, namely properties
of dependence among the columns. For any matrix over any field,
there is a matroid whose elements correspond to the columns of
the matrix and whose independent sets of elements correspond to
the linearly independent sets of columns. A matroid M is completely
determined by its elements and its independent sets of elements.

There are matroids which do not arise from any matrix over
any field, so matroid theory does truly generalize an aspect of
matrices. However, matroid theory is justified by new problems in
matrix theory itself, in fact by problems in the special matrix
theory of graphs (networks). It happens that an axiomatic matroid
setting is natural for viewing these problems and that matrix
machinery is superfluous for viewing them.

Much of matroid theory has been motivated by graphs. A graph
G may be regarded as a matrix N(G) of zeroes and ones, mod2,
which has exactly two ones in each column. The columns are the
edges of the graph and the rows are the nodes of the graph. An
edge and a node are said to meet if there is a one located in that
column and that row. Of course a graph can also be regarded
visually as a geometric network. It is often helpful to visualize
statements on matroids for the case of graphs, though it can be
misleading. Matroids do not contain objects corresponding to
nodes or rows.

335
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Another motivation here will be another source of matroids which
is an extensive theory in its own right. It is well known in various
contexts, including systems of distinct representatives, (0,1)-
matrices, network flows, matchings in graphs, and marriages. We
will refer to it here as transversal theory.

2. Problem. The following definition of matroid has certain
intrinsic interest. :

A matroid, M = (E, F), is a finite set E of elements and a non-
empty family F of subsets of E, called independent sets, such that
(1) every subset of an independent set is independent; and (2) for
every set A C E, all maximal independent subsets of A have the
same cardinality, called the rank r(A) of A.

Any finite collection of elements and nonempty family of so-called
independent sets of these elements which satisfies axiom 1 we shall
call an independence system. This also happens to be the definition
of an abstract simplicial complex, though the topology of complexes
will not concern us.

It is easy to describe implicitly large independence systems
which are apparently very unwieldy to analyze. For example,
given a graph G, define an independent set of nodes in G to be
such that nb edge of G meets two nodes of the set.

The minimum coloring problem for an independence system is
to find a partition of its elements into as few independent sets
as possible.

A problem closely related to minimum coloring is the ‘“packing
problem”. That is to find a maximum cardinality independent
set. More generally the ‘“weighted packing problem” is, where
each element of the system carries a real numerical weight, to
find an independent set whose weight-sum is maximum.

For any independence system, any subsystem consisting of a
subset A of the elements and all of the independent sets contained
in A is an independence system. Thus, a matroid is an independence
system where the packing problem is postulated to be trivial for the
system and all of its subsystems. After having spent much labor
on packing problems, it is pleasant to study such systems. Matroids
have a surprising richness of structure, as even the special case of
graphic matroids shows.

A main result of this paper is a solution of the minimum coloring
problem for the independent sets of a matroid. Another paper
will treat the weighted packing problem for matroids.
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3. Ground rules. One is tempted to surmise that a minimum
coloring can be effected for a system by some simple process like
extracting a maximal independent set to take on the first color,
then extracting a maximal independent set of what is left to take
on the second color, and so on till all elements are colored. This
is usually far from being successful even for matroids.

Consider the class of matroids implicit in the class II of all
matrices over fields of integers modulo primes.. (For large enough
prime, this class includes the matroid of any matrix over the
rational field.) We seek a good algorithm for partitioning the
columns (elements of the matroid) of any one of the matrices
(matroids) into as few sets as possible so that each set is independent.
Of course, by carrying out the monotonic coloring procedure
described above in all possible ways for a given matrix, one can be
assured of encountering such a partition for the matrix, but this
would entail a horrendous amount of work. We seek an algorithm
for which the work involved increases only algebraically with the
size of the matrix to which it is applied, where we regard the size of
a matrix as increasing only linearly with the number of columns,
the number of rows, and the characteristic of the field. As in most
combinatorial problems, finding a finite algorithm is trivial but
finding an algorithm which meets this condition for practical
feasibility is not trivial.

We seek a good characterization of the minimum number of
independent sets into which the columns of a matrix of II can be
partitioned. As the criterion of ““good’ for the characterization we
apply the “principle of the absolute supervisor.”” The good charac-
terization will describe certain information about the matrix which
the supervisor can require his assistant to search out along with a
minimum partition and which the supervisor can then use “with
ease” to verify with mathematical certainty that the partition is
indeed minimum. Having a good characterization does not mean
necessarily that there is a good algorithm. The assistant might have
to kill himself with work to find the information and the partition.

Theorem 1 on partitioning matroids provides the good charac-
terization in the case of matrices of Il. The proof of the theorem
provides a good algorithm in the case of matrices of II. (We will
not elaborate on how.) The theorem and the algorithia apply -as
well to all matroids via the matroid axioms. However, the ‘““goodness”
depends on having a good algorithm for recognizing independence.
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4. Theorem. Let {M;{, i=1,---,k, be an indexed family of
matroids, M; = (E, F}), all defined on the same set E of elements.
Let r;(A) denote the rank of A C E relative to M,;. Let |A| denote
the cardinality of A.

THEOREM 1. Set E can be partitioned into a family { I;{,i =1, ---,k,
of sets I, © F,, if and only if there is no A C E such that

[A| > 2 ri(A).

Inparticular, where the M;’s are the same matroid M, we have that:
The elements of a matroid M can be partitioned into as few as k
sets, each independent in M, if and only if there is no set A of elements
such that
|A| > k-r(A).

Proof of the “only if” part is easy. Suppose that { I;}, i =1,---,k,
is a partition of E such that I; is independent in M;. Then for
any ACE,

Al =2 AN .2 ri(A).

5. Lemmas. A set A C E is called dependent relative to a matroid
M = (E,F) if it is not a member of F.

Let A be any subset of the elements of a matroid M. Let I be
any independent subset of A (relative to M). The set SC A,
consisting of I and all elements e € A such that I\Je is dependent,
is called the span of I in A (with respect to M).

LemMMA 1. For any set A of the elements of a matroid M, and any
independent set I C A, the span of I in A is the unique maximal set
S such that ICS CA and r(S) =|I]|.

ProoF. Let S be any maximal set such that ITCSCA and
r(S) =|I|. Consider any e A — I. By the definition of .rank,
I'is a maximal independent subset of S. Thus, if e U [ is independent,
then e S. And thus, on the other hand, if el is dependent,
then I is a maximal independent subset of e\US. Hence, in this
latter case, by matroid-axiom 2, r(e\US) =|I| and so eCS.
Thus, S is the span of I in A, and the lemma is proved.

Where I is any independent set of matroid M, not necessarily
contained in set A, we will denote the span of I A in A, relative
to matroid M, by T(I,A,M).

A minimal dependent set of elements of a matroid M is called
a circuit of M.




7 Matroid Partition

MATROID PARTITION 339

LeEmma 2. The union of any independent set I and any element
e of a matroid M contains at most one circuit of M.

Proor. Suppose I\Ue contains two distinct circuits C, and
C,. Assume [ is minimal for this possibility. We have e C, N C,.
There is an element e, & C;, — C; and an element e, & C, — C,.
Set (I Ue) — (e;Ue,) is independent since otherwise I —e, is a
smaller independent set than I for which (I —e;) Ue contains
moze than one circuit. Set I and set (I Ue) ~ (e, Ue;) are maximal
independent subsets of set I\ Je. This contradicts axiom 2.

6. Algorithm. Let {I;} (i=1,---,k) be a family of mutually
disjoint subsets of E such that I, is independent in matroid M;
= (E, F;). Any number of these may be empty. Denote their union
by H = U ({1;}). Set H is said to be partitionable (relative to { M,}).

Suppose there is an e E — H. We shall show how either to
find an A CHUe such that |A| > ;> r(A), or else partition
H\ e, i.e., rearrange elements among the sets I; to make room
for e in one of them while preserving their mutual disjointness and
their independence, respectively, in the matroids, M;. This will
prove the theorem.

This algorithm uses as a “primitive operation” the following:
for any given index i, for any given set I C E which is known to
be independent in M;, and for any element e & E — I, determine
that I U e is independent in M, or else find the C C I\ e such that
C is a circuit of M,;. It is easy to see how this operation can be
reduced to operations of the following type: determine whether or
not I e is independent in M;. In view of axiom 2, it is easy to
see how, using either one of these types of operation, to determine
r;(S) for any SCE.

PHASE 1 oF THE ALGORITHM. Let S;=E. For each j— 1,
starting with j — 1 = 0, see if there is some i, call it {(J), such that

| Lihy N Sjoal <rigp(Sioy).
If so, let
Sj = TLy; Si-1; Mig)
be the span in S,_,, with respect to matroid M,;,, of I;;, NS, ;.
Then repeat the above with j — 1 one greater. In this way, we
construct a sequence ([;q),S)), -+, (I;n,S,). The labels i(j) are

not necessarily distinct.
Set S; is a proper subset of S; , since, by Lemma 1,
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rign(S)) = | Ly N S| <rigyh(Sj-1)-

Therefore, in order for the sequence to stop, we must reach an
S, such that for every i, |I;N\S.| = r«(S,). Because the I’s are
disjoint, this is equivalent to

|HmSnl = izri(Sn)-
Now, if e S, — H, then where
A=HNS)UeCS,,

we have
[A| = |HNS.| +1> .2 r(S,) = :2_ri(A).

Therefore, according to the ‘“only if”’ part of Theorem 1, since
ACHUeand |A| > ;> ri(A), set HUe can not be partitioned.

On the other hand, where e E — (H \US,), we shall show how
H\Je can be partitioned.

Puase 2. Since e S, and e € S,, and since the S;/s are nested,
there is some S, such that e ¢ S, and such that e S; for 0 < j < h.

If eU I, is independent, in M;;, then adjoin e to I, and
we are done. Otherwise, let C be the circuit of matroid M;, which
is contained in e I;y.

Set C is not contained in S,_, because then, by the definition of
the span function T and the construction of S,, we would have
eE S,. Let m be the smallest integer, 0 < m < h, such that C is
not contained in S,,.

Let ¢’ be some member of C — S,,. By Lemma 2, I/y =e Ly
— e’ is independent in M,y. Replacing I, by I/, and letting
I} = I, for i = i(h), we now need to dispose of ¢’ instead of e.

We know that ¢ ¢ S,, and that ¢ € S; for 0 <j <m. We can
also show that sequence, (I{y,S)), -+, (I{m,Sx), is of the same
construction as sequence, (I;y),S1), -+, (Liw,Sh):

Consider the terms, j=1,---,m, in order. If i(j) = i(h), then
Il;,=eU I —e. Since CCS;._;, the set D= (I};,Ue’) NS,
= (L;;yUe) NS is dependent in M,;, and thus

rip(D) = | Iiy N Sja| = [ Liy NSl
Therefore by the uniqueness asserted in Lemma 1 we have that
T(I;((j),ijl;Mi(j)) = T(Iiu);Sj—l;Mi(j)) =S

This relation obviously also holds if i(j) = i(h), since then I}
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= I;(;. Thus we can treat ¢’ in the same manner that we treated
e, and so on. Since m is a positive integer strictly less than h, we
will be done with this application of Phase 2 in less than & iterations.
That completes the description of the algorithm and the proof
of Theorem 1.

7. Some applications. For any integer ¢, 0 < ¢ < | E|, let Fi be the
family of subsets of E which have cardinality at most t. Clearly,
M4 = (E, FY) is a matroid, and the rank function r% of M% is r'(A)
= min({, |A}).

ApPLICATION 1. For any indexed family {M;} of matroids, M;
=(E,F),i=1,.--,k, consider Theorem 1 applied to the indexed
family consisting of { M} together with matroid M. Clearly, set
E can be partitioned into sets which are independent respectively
in matroid My and matroids M; if and only if at least some |E| — ¢
members of E can be partitioned into sets which are independent
respectively in matroids M;. Thus Theorem 1 says that the latter
can be done if and only if there is no A C E such that

[A| > ridA) + .2 r(4), ie., |[A| >t+ D ri(A).

APPLICATION 2. In particular where |E| — ¢t = ;D _r/(E), we have
that: there exist mutually disjoint subsets of E which are bases
(maximum cardinality independent sets) respectively of matroids
M, if and only if there is no A C E such that |A| > |E| — >_ri(E)
+ > ri(A), ie., such that |E — A| <,> (r(E) — r:(A)).

Where the M;’s are the matroids of graphs, this result is equiva-
lent, using rank-properties of graphs, to a theorem of Tutte [11],
and also of Nash-Williams (7] where the graphs are identical.

Similarly, Theorem 1 itself implies the following theorem of
Nash-Williams [8].

The edges of a graph G’ can be partitioned into as few as k forests
if and only if there is no subset U of nodes in G such that, where E
is the set of edges in G which have both ends in U,

|Eyl > k(| U| — 1).

Nash-Williams’ theorem follows (we omit the proof) from
Theorem 1 by using the following characterization of the rank
function of a graph due to Whitney:

The rank r(A) of any subset A of edges in G, i.e., the rank of
the matroid subset corresponding to A, equals the number of
nodes minus the number of connected components in the subgraph
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consisting of the edges A and the nodes they meet, or equivalently
in the subgraph consisting of the edges A and all the nodes in G.

For the case where the M,’s are identical sets of vectors in a vector
space (with respect to linear independence), Theorem 1 is proved
by Horn [5] and Rado [9]. In fact, Rado posed the problem of
deciding whether or not the result extends to matroids. I did not
know of their work until the present work was completed.

For any integer ¢ = 0, and any matroid M = (E, F), let F* con-
sist of the members of F which have cardinality at most t. Clearly,
M'= (E, FY is a matroid, called the truncation of M at t.

AppLICATION 3. For any matroid M and for any prescribed
integers t(i), i = 1, - - -, k, such that 0 <t(i) < r(E), let M; = M'¥,
Applying Theorem 1 to this family of matroids gives n. and s. condi-
tions for there to be a family of independent sets of M of specified
sizes (i), t=1,---,k, whose union is E.

AppLICATION 4. Applying the result of Application 2, to this
same family of matroids gives n. and s. conditions for there to be
a family of mutually disjoint independent sets of M having specified
sizes t(1).

For any matroid M = (E, F) and any prescribed independent set
JEF, let F’ consist of sets I such that J I =@ and such that
(JUI)EF. Clearly, M= (E,F’) is a matroid.

ApPPLICATION 5. For any matroid M = (E, F) and any prescribed
family of mutually disjoint independent sets J(i) € F, i =1, ---,k,
let M;= M"’® Applying Theorem 1 to this family of matroids
gives n. and s. conditions for there to be a partition of E into
independent sets I, < F such that J;, C I;.

APPLICATION 6. Applying the result of Application 2 to this
same family of matroids gives n. and s. conditions for there to be
a family of mutually disjoint bases I; of M such that J; C I..

For any matroid M = (E,F) and any A C E, let F* consist of
the sets I € F such that I C A. Clearly M* = (E, F*) is a matroid.

For any matroid M = (E, F) and any prescribed family of sets
AQVCE,i=1,---,k, let M;=M*" and so on.

One can combine these and later constructions in other ways. The
algorithm of course applies as well as the theorem.

8. A class of Abelian semigroups. Relative to any indexed family
{M;},i =1, ---, k,ofindependencesystems, M; = (E, F;), on the same
set E, a set H C E is called partitionable if it can be expressed in
the form H=1I1,U---UI, where I, F;, We may, of course,
without further restricting H, require that these I’s be mutually
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disjoint. Let F denote the family of subsets H of E which are
partitionable relative to {M;}. Clearly, M = (E,F) is an inde-
pendence system. It is denoted as M = ;D>_M; and called the sum
of the systems M.,.

It is easy to show that this sum is associative, and commutative,
and has a unique identity element. Thus, the independence systems
on a given set E form an abelian semigroup, say G, under this
operation. The theorem below shows that all the matroids on set
E form a sub-semigroup of G.

THEOREM 2. Where the M;’s are matroids, ;)_M; is a matroid.

We have only to prove that this system satisfies matroid-axiom 2.
Let H be any member of F. Letting this H be the H of the
matroid-partition algorithm, we get a certain set S, C E such that

IHmSnI = izri(Sn)-

We showed during Phase 1 of the algorithm that, for any e & S,
— H, the set H|\Je is not partitionable. Thus H is a maximal
partitionable subset of H\JS,. We must show the stronger fact
that H is a maximum-cardinality partitionable subset of H U S,.
That is, for any partitionable subset H of HUS,, |H'| <|H|.

Since H' C H\US,, we have

|H — S,| <|H - 8,|.

Since H’ is partitionable, we have, using the “only if”’ part of
Theorem 1,

|H,msn| éizri(H,mSn) é izri(sn) = IHmSni'

Adding these two inequalities together, we get |H’'| <|H].

Let A be any subset of E. Suppose that the above H is any
maximal partitionable subset of A. Phase 2 of the partitioning
algorithm shows that, for any e E — (HNS,), the set H(e is
partitionable. Therefore, A C H\J S,. Therefore, H is a maximum-
cardinality partitionable subset of A, as well as of H\JS,. Thus,
system M satisfies matroid-axiom 2, and so Theorem 2 is proved.

(There are at least two other proofs of Theorem 2 which do not
use the partition-algorithm. They appear respectively in the as
yet unpublished papers Matroids and the greedy algorithm and
Submodular set functions. The latter paper describes a more general
construction, from which the present matroid-sums, as well as
the “transversal matroids”’ which we are about to describe, were
originally derived.)
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“Matroid-sums” is a useful “nonmatric’ way to construct
matroids. Let M, and M, be matroids determined by matrices N,
and N, where the columns of both N, and N, are indexed by the
set E. It can be shown that if N, and N, are matrices over different
fields, say the integers modulo different primes, then matroid
M, + M, is not generally the matroid of any matrix over any field.

It can be shown using an extension of the technique in [2], that
if N; and N, are matrices over the same commutative field, ¥, then
M, + M, is the matroid of a matrix, say N, over a field extension
of ¥ by about |E| indeterminates. However, as indicated in [2],
even in this case one would not determine whether a set is indepe-
pendent in M, + M, by pivoting in N, but rather by applying the
matroid-partition algorithm to M, and M,.

9. Transversal matroids. An interesting special case of matroid-
sum, iZM,-, is where all the summands are rank-one matroids.
Clearly, r;(E) = 1 if and only if every member of F;, besides the
empty set, consists of a single element of E.

Assume ri(E) =1, i=1,.--,k. Let @; consist of the elements
of E which are not themselves dependent in M;. A set H C E which
is partitionable relative to {M,} is called a partial transversal, or
a partial SDR, of the indexed family {Qi}. Matroid M = ,>_M,,
for this case, is called a transversal matroid.

Clearly, the partial transversals of any indexed family, {@;},
t=1,.--,k, (of not-necessarily-distinct sets @, C E) are the sets
H C E which can be expressed in the form H= I, --- U I, where
I, either consists of a single element of @; or else is empty. We may,
of course, without further restricting H, require that these I’s be
mutually disjoint. Set H is called a transversal or an SDR of |@Q:}
if the I’s are mutually disjoint and nonempty, i.e., if |H| = k.
Thus a partial transversal of family {Q.} is a set which is a trans-
versal of some subfamily of {@;}.

Theorem 2 shows that the partial transversals of a {g;} are the
independent sets of' a matroid M = (E, F), a transversal matroid.
Given {Q;}, the partition algorithm provides a good algorithm
for deciding whether or not any given subset of E is independent
in M, for computing the rank of M, and so on.

Matroid theory and transversal theory enhance each other via
transversal matroids, as do matroid theory and graph theory via
graphic matroids.

P. J. Higgins [4] gives n. and s. conditions for an indexed family
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{Q:}, i=1,---,ko, of sets to have k; mutually disjoint partial
transversals of prescribed sizes t(1),t(2),---,¢(k;). This is the
subject of Application 4 in §7 by taking the M there to be the
transversal matroid of {Q}.

Much of the present article consists of extractions from [1] and
[3]. Paper [3] contains another view of transversal matroids, and
also an alternative approach to the partition of transversal matroids
using the max-flow min-cut theorem and the integrity theorem of
Ford and Fulkerson.

For other related material see [6], [10], [12], the preceding
article, and the next one.
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