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The  Marriage Theorem  
  
2.1  Given a set of girls, a set of boys, and the set of pairs, (i, j), 
such that boy, i, loves girl, j.  (All explicitly mentioned sets in 
these lectures are finite unless explicitly clear otherwise.) 
  

The traditional way to say the marriage theorem is: 
The girls can all marry distinct boys who love them iff  
for, every subset S of the girls, the size of S is not smaller than 
the number of boys who love someone in S. 
  

I prefer the following way to say the theorem because to me 
it is weird to speak of all subsets of girls as a criterion for the 
conclusion. 
  
For any input to the theorem, either there is a way for all 
the girls to marry distinct boys who love them, or else 
there is a subset S of the girls which is smaller than the 
number of boys who love someone in S.  (Not both). 
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We will see that the best way to prove the non-obvious part of the 
marriage theorem is by an algorithm which tells how to find either 
one way for the girls to all marry,  
or else one subset S of the girls. 
  

The non-obvious part of the marriage theorem is an example 
of an "existentially polytime theorem" (EP theorem).   
 
The "not both" part of the marriage theorem is not EP.  
An EP theorem for which we also have "not both"  
is called "a good characterization".  A good characterization leads 
to what is called an "NP-coNP" predicate.   
  

Roughly speaking, an EP theorem is one which says that, for 
any input, there exists something, any instance of which, when 
appropriately displayed, can easily be seen to be an instance. 
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(2.1.2) Not all EP theorems have "not both".   
For example a theorem of Dirac says:   
For any graph G, either there is a node v in G whose "degree"  
(the number of edges of G  which meet v)  
is smaller than half the number of nodes of G,  
or else there is a hamilton cycle C in G  
(i.e., a way to tour all the nodes once and return home by 
walking along edges of G).   
 
Maybe there exists both a node v and a cycle C.  
An algorithmic proof needs only to tell how to find one instance of 
one or the other.  It might find a hamilton path when there is a 
node of "degree" smaller than half the nodes. Or vice versa it 
might find a node of small degree when there is a hamilton 
polygon. 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

2.2    We will give five very different proofs of the marriage 
theorem.  The first is transparent and algorithmically 
useful.  The other four proofs are algorithmically, in 
themselves, not very useful.  
 
One reason we give them is to illustrate that proofs which are 
traditionally appealing can leave the impression that there is no 
easy way to find an instance of what an EP theorem says exists.  
It is curious that mathematicians traditionally have liked to prove 
things exist but have had less interest in how to find them.   
All five of the proofs are instructive in five very different ways. 
 
Before giving the proofs, we mention some mathematically 
popular ways to represent various theories including the 
marriage theorem.  They sometimes even cause 
mathematicians to imagine that they are treating different 
theories, though they are not really different theories in the sense 
that it is easy to translate from one representation to another.  
 
The ‘bipartite graph’ representation, K, has a ‘node’ for each 
girl, a ‘node’ for each boy,  and an ‘edge’ for each girl-boy pair 
where the boy loves the girl.  
The ‘subset collection’ representation has the set, B, of boys 
and, for each girl, the subset of boys who love her.  
The ‘incidence matrix’ representation has a matrix whose 
columns are the girls, whose rows are the boys, and whose entry 
in each position (i,j) is non-zero when boy i loves girl j, and zero 
otherwise.  
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2.3  Here is the proof which describes an easy algorithm  
to either find a way for all the girls to have distinct husbands  
who love them or else find a find subset of girls who together are 
not loved by enough boys.   
 
Let’s do it in terms of the graph representation.  
A ‘matching’ in the graph K is a subset M of the edges such that 
any node of G (boy or girl) is ‘hit’ by at most one member of M.  
We want to see how to find either a matching which hits all the 
girl nodes or else a subset of the girl nodes which is bigger than 
its neighboring set in K of boys.  
 
Suppose we have a matching M which does not meet  girl, g.  
Grow an ‘alternating tree’ T in K, two edges and two nodes at a 
time, as follows, starting with node g (which by itself is an 
alternating tree):  choose to add to T, if possible, any edge e 
which hits a girl in T and a boy, say b, not in T, and then add to T, 
if there is one, the edge of M which hits node b.   
If you find that there is no edge e, then the set of girl nodes in T 
has a too small neighboring set in K of boys.   
 
If there is an edge e, but the other end b of e is not hit by an edge 
of M, then trace the path P in [T + e] from b back to g.  Get a 
larger matching M’ by replacing the edges of M in P by the other 
edges of P.  That’s it, the proof and easy algorithm.   
In the live performance, we will show pictures.   
But here, you should draw pictures.  
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2.4 The Halmos-Vaughn proof of the marriage theorem:   
Given K, assume the marriage theorem has been shown to be true 
for any bipartite graph K’ which has fewer girl nodes than K.  
Suppose there is no subset S of the girls of K whose neighboring 
set of boys in K is smaller.  We want to see that there is a 
matching M in K which hits all the girls of K.   
 
If the neighboring set of every proper subset S of the girls of K is 
larger than S, we can choose any edge e hitting any girl for our 
matching, and then find the rest of M as any matching which hits 
all the girls in the graph K’, obtained from K by deleting e and the 
boy and girl hit by e.   
 
Otherwise, there is some proper subset S of girls in K  
whose neighboring set of boys in K is the same size as S.   
Take any matching M’ in K which hits all of S.   
In the graph K’, obtained from K by deleting M’ and all the nodes 
hit by M’, there is a matching which hits all the girls of K’.  It 
together with M’ is a matching in K which hits all the girls of K.  
That’s it.  
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2.5 A linear algebra proof of the marriage theorem:   
Consider the matrix K whose columns are the girls, whose rows 
are the boys, and whose non-zeroes are all different letters, i.e., 
algebraically independent ‘indeterminates’, in the positions (i, j) 
such that boy i loves girl j.    
 
Since the determinant of a square matrix means the product of 
entries in a general diagonal summed (with +1 or -1 coefficients) 
over all  general diagonals, a subdeterminant of K is different from 
zero iff it has a general diagonal all of whose entries are non-
zero.  Hence the girls can all marry distinct boys who love them iff 
some square submatrix of K, using all the columns, has non-zero 
determinant.   
 
If this is not the case then, by linear algebra, there is some 
minimal subset say S of columns which is linearly dependent.  
That is, the coefficients are non-zero in a linear combination of S 
equal to the column of all zeroes.   
 
By familiar linear algebra, these coefficients are subdeterminants 
of a matrix whose columns are all the columns of S and whose 
rows are some subset, say R, of the boys which is smaller than S. 
 
If the columns of S had non-zeroes in some row not in R, then 
since we have a linear combination, whose coefficients are non-
zero subdeterminants of K, which equals zero, we would have a 
non-trivial algebraic relation of the algebraically indeterminate 
letters in K.  Hence there is no boy not in R who loves a girl in S, 

and so the number of boys who love some girl in S is smaller than 
S.  That’s it.  
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One could use a version of Gaussian elimination to 
calculate the rank of K, and thus determine the largest number 
of girls who can marry.  However the algorithm would generate 
polynomials in the indeterminates whose sizes grow exponentially 
with the input, K, and so it’s a very bad algorithm. 
   
On the other hand, the algorithm in our first proof of the marriage 
theorem can be used to compute in polytime the linear algebra 
rank of K, that is, the largest number of girls who can marry. (We 
will see how to do it in the next section on the Hungarian Method.) 
 
In a later chapter we will study Gaussian elimination in order to 
learn a version which is polytime for matrices of rational numbers.  
 
A ‘matroid’, (E,F), is a groundset E, and a non-empty family F 
consisting of the so-called ‘independent subsets’ of E, such that 
every subset of an independent set is independent,  
and, for every subset S of E, every inclusion-maximal subset of S 
is the same size, called the rank r(S) of S, in matroid (E,F).  
  
If E is the column set of a matrix whose entries are numbers, or 
polynomials in algebraic indeterminates, and if F is the family of 
linearly independent subsets of E, then (E,F) is a matroid.  
 
(2.6.1)  Our linear algebra proof of the marriage theorem 
observes, and uses, that for any instance with set E of girls, and 
with members of F being the subsets of E which have a set of 
distinct boys who love them, (E,F) is a matroid.  These are called 

‘transversal matroids’.   
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2.7 A linear programming proof of the marriage theorem:  
A matrix is called ‘totally unimodular’ (t.u.) when every 
subdeterminant equals 0, 1, or -1.   
If a matrix A is such that, for each column, the entries in that 
column are zeroes except for at most one -1 and at most one 1, 
then it is fairly obvious that A is t.u.  It also obvious that a matrix 
obtained by adjoining an identity matrix to a t.u. matrix is still t.u.  
 
A ‘digraph’, G, is a set, V, of ‘nodes’ and a set, E, of ‘edges’, such 
that each edge has a single ‘tail’ in V and a single ‘head’ in V.  The 
incidence matrix, A1, of G has a column for each edge of G and 
a row for each node of G.  The entry in position (i,j) is +1 when 
node i is the head of edge j, -1 when node i is the tail of edge j, 
and 0 otherwise.  Hence A1 is t.u.  
 
Where A1  and A2 are any matrices of real numbers,  
where b1 and b2 are compatible column-vectors of real numbers, 
and c is a row-vector of real numbers, the general   
linear programming problem  can be formulated as:  
 
(2.7.1)  Find, if there is one, a column vector  x  such that   
A1x = b1; A2x ≤ b2; and such that cx is maximum (or minimum).   
(Usually the inequalities x ≥ 0 are included.)  
 
A point x is called a basic point of the linear system,  
L = {A1x = b1, A2x ≤ b2},  
if it is the unique solution of the set of constraints of L  
which it satisfies with equality.   

A point x is called a feasible point of L if it satisfies L.   
P(L) = {x: A1x = b1, A2x ≤ b2 } is called a (convex) polyhedron.  
It is called a polytope when it is bounded.  
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(2.7.2)   Some basic facts of linear programming: 
 
(2.7.2a)   A point x0  is a basic feasible point of a linear system L 
iff there exists a linear objective, cx, such that x0  is the unique 
point that maximizes cx over P(L), the solution set of L.  Hence, 
the b.f. points of L are also called the extreme points of P(L), 
or the vertices of P(L) 
. 
(2.7.2b)   Every linear function, cx, of x in P(L) is maximized over 
P(L) by a basic point of L and so, in principle, a finite algorithm for 
the linear programming problem is simply to check each basic 
point for its feasibility, and how big it makes cx. 
 
(2.7.2c)  The l.p. duality theorem:   
The ‘dual l.p.’ of l.p. (2.7.1) is the l.p.:  
Find, if there is one, a rvector y = (y1, y2) such that  
y2 ≥ 0;  y1A1  + y2A2  ≥ c;  and y1 b1 + y2b2  is minimum.  
If (2.7.1) and it’s dual have feasible solutions, then they both 
have basic feasible solutions which achieve max cx = min yb.   
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Where A1 is the incidence matrix of a digraph, and  A2  has only 
one non-zero, ±1, in each column,  
the l.p. (2.7.1) is called  
a ‘network flow problem’, or a ‘circulation problem’.   
 
By total unimodularity, and Cramer’s rule for solving a system of 
linear equations, if b is integer valued  
then the basic points of l.p. (2.7.1) are integer valued,  
and if c is integer valued then the basic points of the dual  l.p.  
are integer valued.  
Hence, if both b and c are integer valued, then (2.7.1) is solved 
by an integer valued flow, x, and its dual is solved by an integer 
valued dual-flow, y = (y1, y2). 
      

By appropriately specializing, we get the marriage theorem. 
(Homework).  That’s a lot of machinery just to prove the marriage 
theorem.  However, operations researchers are justified in taking 
this proof very seriously, because at the same time it proves a 
great many other combinatorial theorems.   
There are thousands of papers on solving network flow problems. 
We’ll study the proto-typical instance in the section here on the 
Hungarian method.   
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2.8  A  submodular function, f, is real-valued function of the 
subsets of a set E which satisfies f(A∩B) + f(AUB) ≤ f(A) + f(B) 

for all subsets A and B of E.   
A submodular function f is called a polymatroid function if we 
also have 0 = f(ø) ≤ f(A) ≤ f(AUB) for all subsets A and B of E. 
  
(2.8.1)  It is easy to show that the rank function of some matroid 
on ground set E is the same thing as an integer-valued 
polymatroid function, f, where f of each singleton is 1 or 0.   
For any such f, the independent sets of the matroid, whose rank 
function is f, are the subsets J of E whose cardinality is f(J).  
 
The following theorem provides a way to derive matroids 
which has nothing to do with algebraic independence.  
(2.8.1) Theorem.  For any polymatroid function of subsets of E,  
let J be an independent set (i.e., J ε F),   
when |S| ≤ f(S) for every subset S of J.    
Then (E, F) is a  matroid.    
 
Assuming we have an oracle which for any S tells us the value of 
f(S), we can demonstrate that a set J is not independent in the 
matroid (E, F) of theorem (2.8.1) by showing one subset S of J 

which is bigger than f(S).  How can we demonstrate that a set J is 
independent without calling the oracle for every subset S of J?  In 
a later lecture we will study this question generally, but here we 
answer the question for an important special submodular function: 
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(2.8.2) Theorem. Where K is a bipartite graph with the set B of 
boy nodes, the set E of girl nodes, and an edge from boy to girl 
when the boy loves the girl, let f(S), for any subset S of the girls, 
be the number of boys who loves one or more of the girls in S.  
Then f is polymatroid function of the subsets of girls. (Homework.)  
 
The marriage theorem says that we can always demonstrate that 
a subset J of the girls is independent in the matroid determined by 
the polymatroid function of Thm (2.8.2) by showing a way that 
the girls of J can marry distinct boys who love them.  
  
A submodular proof of the the marriage theorem:  Where 
f(S) is the polymatroid function as in (2.82), suppose we have 
that |S| ≤ f(S) for every subset S of J.  If each girl in J is loved by 
exactly one boy then clearly the girls are loved by distinct boys, 
and the marriage theorem is proved.  
If there are two boys who love the same girl, we can use 
submodularity to show that one of those boys can stop loving the 
girl and we will still have |S|≤ f(S) for every subset S of J.  
(Homework.) That’s it.  
 
This matroid (E, F) of Thm (2.8.1), where f is as in Thm (2.8.2), is 
the same ‘transversal matroid’ as defined in (2.6.1).  In fact the 
desire for an application of Thm (2.8.1), rather than (2.6.1), is 
how transversal matroids were discovered.  


